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ATR ENHANCED PHOTO-EJECTION FROM CATHODES
 

FINAL REPORT
 

I. Summary 

Since January of 1968 Block Engineering, Inc. has been
 

involved in a systematic investigation of Attenuated Total
 

Reflection Enhanced Photocathodes. The ATR cathodes have
 

exhibited significantly improved quantum efficiency due to
 

their very high absorption of incident radiation in an
 

extremely thin (and consequently highly efficient) photo­

emissive layer. The Fresnel optical equations governing the
 

interaction between radiation and an interface of two
 

different media have been investigated theoretically and
 

confirmed by experiment. The work was carried on using
 

pure metallic cathodes in the ultra violet region of the
 

spectrum and later proceded to an investigation of the alkali
 

metals, extending the spectral sensitivity of the cathodes
 

into the blue-visible regions of the spectrum. Quantum
 

efficiency gains from 2 to a factor of 10 have been observed
 

and partial confirmation of the theoretical absorption of
 

incident radiation vs. incidence angle have been obtained.
 



II. Attenuated Total Reflection - An Introduction
 

The application of Attenuated Total Reflection (ATR)
 

to the fabrication of highly efficient photocathodes is a
 

new technique developed at Block Engineering, Inc. For the
 

benefit of those who are not familiar with internal reflec­

tion phenomena as applied to photocathodes, a simplified
 

schematic diagram is shown in the first figure (1).
 

SCHEMATIC 

r . 

Io -

The technique is based upon decoupling the functions of
 

absorption of a photon and emission of an electron. This has
 

been accomplished schematically by (a) injecting photons edge­

wise into a very thin cathode, resulting in large absorption of
 

incident radiation, and (b) ejection of most electrons through
 

the cathode surface along the short dimensions. Thus, the
 

probability of escape is improved since fewer collisions occur
 

as the photo-electron leaves the medium along the short
 

dimension.
 

The actual mechanism is more sophisticated although the
 

fundamental geometry shown in the next figure (2) is also
 

practical.
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Light rays incident on a boundary between two media are
 
totally reflected at or above the critical angle c, depending
 

on the relative-refractive indices of the two media During
 

total reflection, the ray actually penetrates a fraction of
 

a wavelength into the second medium and is deflected back
 

into medium 1. By appropriate coating thickness control, the
 

apparent absorption path length in the second medium (p) can
 

be made large compared to the thickness (d) of medium 2, i.e.
 

-2->>1
 
d
 

The primary reason for this enhanced absorption is the large
 

value of the electric field vector in the x and y directions
 

at the interface. If medium 2 is an absorbing material of
 

appropriate refractive index, then the radiation is attenuated
 

while traveling along the coating and we have Attenuated Total
 

Reflection (ATR)22
 

The ratio P is of fundamental conceptual importance since
 

this effect is primarily responsible for the improvement in
 

quantum efficiency of the cathode. Using the ATR phenomenon
 

a very thin cathode can be made to absorb most of the incident
 

radiation (normally this would require a very thick cathode)
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but it can still remain thin enough so that there is a very
 

high probability that any photoelectron generated will reach
 

the surface. In fact, the collision/capture probability can
 

be made so low that many or most of the electrons with initial
 

velocities toward the n1 n2 (substrate) interface can still
 

escape into vacuum after being reflected at n1 n2 and traveling
 

back through the cathode . Weakly absorbing photoemitters,
 

heretofore useless as cathodes, can be used in the ATR mode.
 

Note that in this illustration (2) light ray #2 penetrates
 

the ATR cathode on its way toward the mirrored surface of the
 

prism, is reflected from it (ray 3 shown displaced), and
 

passes a second time through the ATR cathode before it is lost
 

to the system. This type of simple reflection can further
 

increase the efficiency of such a cathode. More complicated
 

multiple reflection geometries have also been devised and their
 
.
effect on aperture and imaging criteria have been studied4
 

Although many workers have been experimenting in the field
 
5,6
of multiple reflection and interference photocathodes5 , the
 

work up to now has consisted primarily of specialized geometrical
 

optical modifications of standard commercially available photo­

cathodes 5. The large angular restriction and reduced field of
 
.7
 

view which result from the use of these geometries are just
 

two of the many disadvantages inherent in this approach. We
 

have attempted, in our work, to investigate the performance of
 

optimized Attenuated Total Reflection (ATR) photocathodes,
 

which are manufactured specifically for ATR use. Since these
 

new cathodes are on the order of few atomic layers thick, an
 

accurate and stable method for the manufacture and control of
 

such oligatomic films89had to be devised and implemented.
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Fabrication 0of the actual experimental cathodes had to
 

be controlled within extremely precise tolerances through
 

the use of Fizean fringe techniques and fringes of equal
 
11


chromatic order (FECO) We were able to maintain coatings
 
0 0
 

of heavy metals 10 to 50A in thickness with + 5A accuracy.
 

The optical step caused by a deposited film on a polished
 

optical test flat was measured with specially built inter­
. 12
ferometric instrumentation since no commercial devices
 

can resolve steps below 100A with the required accuracy.
 

A typical fringe step pattern illuminated by Sodium light
 

5890A is shown in the next figure (3) and in the Figure ±
 

on the next page.
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The step height (h) can be easily evaluated as it is related
 

to fringe displacement D1
 

h(A) D A- x 2945A 
D1 

for Sodium illumination.
 



Figure 1 
Fizeau Interferometer
 

Step Measurement
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Mass deposit monitors of the resonant crystal or micro­

balance type cannot be used for absolute calibration since
 
0 

the density P of the coatings for films of 100A and below
 
'14
 

may not bear any relation to the bulk density of the 
material13
 

Our first experiments, used spectroscopically pure gold as
 

a solar blind photocathode, because of the ease with which it
 

can be evaporated as a thin film and because of its resistance
 

to contamination. The absorption data indicate agreement with
 

the theoretical predictions, although we have not confirmed the
 

theory in enough detail. The purpose of this report is to
 

delineate our final results under this contract.
 

-7­



Ill. An Introduction to Present Work
 

The phenomenon of Attenuated Total Reflection and its
 

application to enhanced photoemission from cathodes has been
 

explored to some extent by Gunter, Hirschfeld and several
 
15,16
1
other workers 5 In most cases standard photodetectors
 

were modified by the use of an ATR "prism" optically attached
 

to the surface of a standard commercial detection device.
 

Unlike previous investigations, Block has pursued an
 

essentially new approach by tailoring photocathodes specifically
 

for Attenuated Total Reflection behavior. We have attempted
 

to achieve a large field of view (at least 200 for 2 to 4
 

reflections), large aperture area, and a collection of
 

geometries suitable for use in specific experiments. The
 

geometries include a multiple reflection uniline system, a
 

two reflection prism scheme, a unipoint rosette system for use
 

with small spot cathodes, and a multiple internal reflection
 

prism* as examples. Standard internal reflection elements as
 

described by Harric 7 have also been contemplated during the
 

course of the experiments in order to illustrate the wide
 

variety of multiple reflection geometries compatible with the
 

technique.
 

over the period of this work we have attempted to tailor
 
18
specific metallic and alkali metal photocathodes for use in
 

the ultra violet and blue-visible regions of the spectrum in
 

Attenuated Total Reflection mode. The extremely thin cathodes
 

required, and the particular procedures necessary for
 
19
 

optimizing photoemission in this spectral region are one
 

of the subjects of this study.
 

Suggested by W.D. Gunter, Jr.
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Preliminary investigations by Dr. Hirschfeld indicate
 

that the various metallic and alkali coatings to be used as
 

cathodes must be applied to the substrate in extremely thin
 

controlled films whose dimensions and properties tax present
 
20


state-of-the-art measuring devices Our basic apparatus
 

consists of an ultra-high vacuum evaporator system with
 

provisions for electron beam, filament thermal evaporation,
 

and sputtering. The system is capable of low rate and flash
 

evaporation techniques. It has been reworked specifically for
 

ultra thin film coatings of few angstroms thickness but can be
 

used for the evaporation of almost any material(s) in practically
 

any thickness desired. The necessary design criteria pertinent
 

to the system which enable highly controlled thin films to be
 

attained are covered in detail in a separate technology report.
 

Specific techniques for obtaining ultra pure thin films and for
 

calibration have also been reported in great detail separately
 

in technical notes for use by NASA in separate publications if
 

desired.
 

Special cleanliness procedures have been necessitated by
 
21
 

the contaminating effect of extremely small amounts of 
Mercury
 

and other (hard to control) contaminants. The danger of micro­

scopic contamination has necessitated specialized handling
 

procedures. We feel these would be of general interest to all
 

those working in thin films.
 

Our procedure in brief is to manufacture the ultra thin
 

coating on the necessary substrate and measure the thickness
 

as it is being deposited in the vacuum. We immediately
 

subsequently test the quantum efficiency and absorption of
 

incident radiation vs. angle of the cathode. The thin film
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cathode is then tested without being removed from its
 

holder and without breaking vacuum (absolutely necessary
 

in the case of alkali metals), using a photometer system
 

which can measure the optical parameters* of the coating
 

necessary for evaluation. The sample cathode, -if it is of
 

stable material, may later be removed from the vacuum
 

chamber and placed on a goniometer for confirmation of
 

absorption vs. angle measurements. A light source and mono­

chromator with a collection of several gratings, blazed for
 

different regions of the spectrum, provide ultra violet and
 

visible radiation for the photometer. These are also used
 

as the source in testing the efficiency of the photocathode
 

produced on the substrate. An auxiliary electron multiplier'
 

string is used adjacent to the cathode and forms a-photo­

multiplier whose output is connected to a synchronous amplifier
 

for measurement of the extremely low currents expected. Such
 

an open structure photomultiplier enables testing of the cathode
 

in a geometry similar to that which will be used in any practical
 

application.
 

* Primarily absorption and polarization. 
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IV. System Configuration and Description
 

In the block diagram of the system Figure 2,"
 

the basic system functions are outlined. The high vacuum
 

system is necessary for both coating and the testing
 

operation. Ultra-high vacuum is necessary in order to keep
 

the absorption rate of residual gases low enough so that
 

low deposition rates can be used without the danger of
 
22
 

forming a monolayer of residual gas on the substrate
 
- 7
surface. Pressures in the low 10 and 10- 8 Torr range can
 

be achieved in our system with a liquid nitrogen optically
 

blind cold trap. Low ambient pressures are also necessary
 

in view of the fact that extremely high voltages are used
 

on the dynode string and the presence of significant numbers
 

of generated ions in the chamber could cause destructive
 

bombardment of the dynodes or the cathode itself.
 

The substrate is located on a rotatable control fixture
 

which enables stabilization and control of its temperature,
 

if necessary, in order to achieve some measure of adjustment
 

in the crystallite growth rate2 3 on the surface.
 

The source and monochromator are used for both the
 

photometer system and the photocathode efficiency measurements
 

in conjunction with the photoemission electronics (synchronous
 

amplifier) and the electron multiplier structure.
 

The thickness monitor is used during evaporation to control
 

both the rate and the final thickness of the deposit. The
 

electron gun and thermal or sputtering sources are used
 

alternately to heat the sample material to be coated or to
 

heat the substrate itself prior to coating.
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V. Vacuum System
 

A water cooled crucible holder is installed to improve
 

the coating control during Platinum evaporation.
 

A quartz lamp substrate heater and a thermocouple
 

substrate temperature monitor are attached to provide correct
 

substrate temperature for alkali deposition. However, it was
 

found that an increased temperature of the substrate was not
 

beneficial or harmful during alkali deposition and consequently
 

this extra step in the procedure was eliminated. Substrate
 

temperature within wide limits does not seem to affect the rate
 

of deposition of the cathode material or its effective quantum
 

efficiency.
 

BLOCK DIAGRAM
 

The schematic functional diagram in Figure 3
 

illustrates the various manipulations and controls available
 

for handling the cathode khile inside the system. Although
 

the present system is particularly suited to the manufacture of
 

ultra thin cathodes, it has sufficient flexibility to coat
 

practically any usable geometry and will allow coating almost
 

any known material in any commonly used coating environment.
 

A substantial amount of time was required to modify the vacuum
 

system with all necessary gauges, safety cutouts and monitor
 

functions for ultra thin film control. The rapid pump down
 

time is necessitated by the fact that rapid recycling of the
 

system is desirable in order to manufacture and test a wide
 

variety of cathodes and cathode thicknesses. It is also
 

necessary to have rapid pump down to prevent buildup of an
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adsorbed gas layer between the time when glow discharge cleaning
 

ceases and coating begins.
 

The electron gun, in particular, was overhauled and
 

redesigned for low current (small spot size) operation at a
 

precisely controlled intensity level. Typical electron guns
 

are far too large and uncontrollable for accurate rate control
 

of deposition.
 

A new Jarrell-Ash meter monochromator was installed and
 

calibrated using an 1180 line per millimeter grating blazed
 
0 0
 

at 3000A for the UV work and a similar grating blazed at 6000A
 

for the blue-visible spectral region. We have available a 1.2p
 

blazed grating for use on cathodes sensitive in the red and
 

infrared regions of the spectrum.
 

A tremendous amount of difficulty was encountered in
 

obtaining a suitable system geometry which allows for a coating
 

of the test cell substrate (without coating primary sensors and
 

windows) and which also permitted subsequent testing of the
 

absorbtion of incident radiation by the cathode and its
 

quantum efficiency.
 

All of the windows and optics used are special quality
 

Lithium Fluoride or quartz. Since Lithium Fluoride cannot be
 

easily cleaned of any deposit, it is necessary to carefully
 

baffle the system such that no deposit arrives at the Lithium
 

Fluoride surfaces in the first place. A suitable manipulator
 

was finally designed which allows motion of the dynode to and
 

away from the cathode while the unit is still in vacuum. A
 

lateral cathode positioner, which'can select different areas of
 

the cathode for illumination and testing presents a check on
 

nonuniformity.
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Several electron multiplier (dynode) strings have been
 

purchased for use with the cathode. These units are
 

calibrated using a small f-ray source with a half life of
 

approximately 15 years. The f-ray source produces a known
 

quantity of high energy primary electrans which serve
 

to check the gain of the tube with the exception of the first
 

dynode. The first dynode cannot be checked using this method
 

since the high energy electrons produce secondaries not
 

characteristic of those which would be obtained from low
 

velocity primary photoelectrons produced by the cathode.
 

A complete collection of thermal evaporation electrodes
 

and fixtures was fabricated in order to determine the optimum
 

configuration for controlled coating of these materials in the
 

form of cathodes. Flat plates, discs, boats, crucibles, and
 

capillary evaporation tubes are all available and were investigated
 

with the various metals which were used during the program.
 

optics such as polarizers, light choppers and sources
 

have been obtained which enable testing from the vacuum ultra
 

violet region of the spectrum down into the near infrared.
 

Extensive use was made of coating technology avialable in
 

the immediate geographical area and continuous contact with
 

local coating vendors has enabled us to proceed without the
 

necessity for completely relearning technology which is well
 

known in the field.
 

The coating has proceeded using the inert precious metals
 

first due to their ease of handling and immunity from contamina­

tion and progressing toward the alkali metals which are far more
 

difficult to handle and much more sensitive to contamination and
 

impurity.
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Procedure for Calibration, Coating and Testing
 

Summary
 

1. Calibrate mass deposit monitor for the material
 

to be deposited. Details are noted in calibration section.
 
0
 

Particular attention is paid to films below 50A in thickness
 
0
 

for work in the ultra violet and films from 50 to 250A in
 

thickness for the blue-visible region.
 

2. Deposit the necessary thickness of material on
 

a prepared hemicylinder which has been thoroughly cleaned. The
 

cleaning procedure is covered in the cathode formation section.
 

3. Measure absorption vs. angle for useful response
 

wavelengths of the cathode.
 

4. Test the cathode for relative quantum efficiency
 

vs. angle and relative quantum efficiency vs. wavelength.
 

Establish the maximum response angle and measure the absolute
 

quantum efficiency for operation at this angle. This will
 

establish the actual enhancement due to the ATR technique.
 

These results are then compared to theoretical predictions for
 

absorption improvement and are related to quantum efficiency
 

enhancement,
 

5. Determine, by calculation, the optimum thickness
 

of material for single pass geometry using the same cathode
 

material and the same substrate. Multiple pass geometry optimum
 

thickness should be calculated using multipass substrate.
 

6. Coat a multiple path prism with the calculated
 

optimum thickness cathode. The thickness of the deposited
 

cathode will-be established using previously determined optimum
 

thickness and correcting for the multiple pass optical path.
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Complete procedure
 

The following section outlines in detail the
 

procedures used during the entire program for coating and
 

testing of the cathode materials.
 

I. Prepare and coat substrate.
 

1. Use standardized washing methods and gloW
 

discharge bombardment to thoroughly clean the substrate
 

prior to coating.
 

NOTE: Substrate is never left in vacuum with the liquid
 

nitrogen cold trap off.
 

2. System in coating configuration.
 

a. Place shutters over all windows to
 

protect surfaces.
 

b. Position thickness monitor.
 

c. Substrate cell rotated into coating
 

position with its flat face in the downward direction.
 

d. Coating shutter closed during evaporate 

preheat. 

e. Total reflection mask in place over a 

small section of the cathode.
 

f. All dynode and external monitor electronics
 

are turned off (ion gauge, dynode string, bias mesh, discharge
 

source, etc.).
 

g. Thickness monitor checked and stabilizing
 

at temperature.
 

h. Determine substrate temperature and control
 

substrate as necessary.
 

i. Use electron beam or thermal source for
 

evaporation of cathode.
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j. Monitor coating thickness and rate of
 

deposit of the cathode material. Coatings will be-uniform
 

across the face of the cathode except for a small section
 

which will be masked by a plate which is not in contact with
 

the cathode substrate. This will leave an area where total
 

reflection occurs and no cathode material is present as a
 

comparison area on the cathode substrate.
 

3. Test cathode. 

a. Evaporate coating shutter closed. 

b. Electron gun off. 

C. All vacuum gauges turned on.
 

d. Thickness monitor turned off but
 

remaining in position.
 

e. Move substrate from coating position to
 

test position.
 

f. Move dynode multiplier string from shielded
 

position (during the coating sequence) into test position
 

immediately behind the cathode at the optimum distance.
 

g. Rotate all shutters to uncover windows
 

and the dynodes.
 

h. Check calibration of dynode string by moving
 

the f -ray source in and out of the photomultiplier field.
 

4. Illuminate and monitor primary photoelectron
 

current at the cathode using a electrometer if possible.
 

a. Check photoelectron current vs. angle using
 

the previously calibrated photomultiplier dynode chain.
 

b. Check for ion feedback.
 

c. Obtain quantum efficiency estimate.
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d. Using the calibrated dynode string obtain
 

an estimate of quantum efficiency vs. wavelength.
 

e. Using the input beam I without mirror H
 

determine the relative quantum efficiency vs. angle of
 

illumination with the substrate. Subsequently determine quantum
 

efficiency vs. wavelength of the incoming radiation at all
 

convenient points. Absolute calibration of the absorption
 

photometer is carried on using an ultra violet light source
 

powered by radio active Krypton gas which has a half life of
 

approximately 5 years.
 

5. Check absorption of the incident light. 

a. As a function of angle. 

b. As a function of thickness of the cathode. 

c. As a function of the polarization of the 

incident light.
 

d. As a function of the wavelength of the
 

incident light.
 

6. Strip and recoat the substrate.
 

NOTE: After several strippings substrate will probably need
 

repolishing. Surface is to be maintained to kA or better
 

in the Helium yellow line.
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VI. System Optics
 

A hemicylindrical cathode substrate was selected since
 

it allows rotation about its 0-axis while maintaining a
 

constant optical path independent of angle 24 .
 

The cathode is coated on the flat face of the quartz
 

hernicylinder and its response to and absorbtion of incident
 

radiation vs. angle can be determined. Optical paths are
 

selected such that parallel light intersects the cathode surface.
 

A retro-reflecting quadrant mirror is used in conjunction
 

with the hemicylinder to redirect the light back through the
 

hemicylinder anti parallel to the input beam and then out of
 

the-system to the photometer. See Figure 5.
 

A multiple internal reflection element is also used
 

(without the retro-mirror) to examine absorbtion in a multi­

reflection geometry.
 

Details on these optical components and their manufacture are
 

found-in Appendix I.
 

Figure 4 illustrates an optical diagram of the
 

system. The optical path is as follows: A selected wavelength
 

from the monochromator/source (a) is incident on the first
 

surface prism (b) through a collimating/converging lens (c),
 

and window. Light then reflects from the first surface fixed
 

mirror (e) into a lens (not shown) and is incident on the
 

hemicylinder/cathode. The beam is reflected at an equal angle
 

with the normal and thence to a curved roof retro-reflecting
 

mirror placed immediately outside the hemicylinder. The beam
 

is displaced laterally and re-enters the cell at where it is
 

again incident, this time on an uncoated section of the substrate.
 

* See theoretical analysis. 
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Total reflection occurs at the uncoated surface and the
 

beam next exits the hemicylinder for a second time exactly
 

parallel to the incident beam (I). The exit beam (E) is
 

reflected from mirror (e) and passes again through the
 

view port and lens (c) displaced laterally from the incident
 

beam. The radiation hits the opposite face of the prism (b)
 

and is reflected through appropriate optics to the photometer (k).
 

The beamt separation is adjustable,by moving the retro­

reflector along the z-z axis or by rotating mirror (e). Due
 

to the hemicylindrical design, the optical path is constant
 

regardless of the input angle of the light beam. Zero absorption
 

calibration ,is possible by moving the cell along the z-z axis
 

until incident and return beams both intersect the uncoated
 

area of the substrate (beneath the coating mask) resulting
 

in total reflection of the beam. This is the zero absorption
 

calibration point. Bysubsequently moving the cell on the z-z
 

axis to different areas of the coating it is possible to
 

determine the magnitude of any inhomogeneities which may result
 

in the cathode deposit.
 

Polarizers may be inserted between (a), (b), (e), or (k) to
 

investigate the effect of polarization on the absorption and to
 

closely check the theory which predicts strikingly different
 

absorptions of the perpendicular and parallel polarized ray,
 

as described in the theoretical section of this report.
 

The diagram on p. 25 and Figure 6 illustrate the
 

photometer/absorption measurement arrangement. Note particularly:
 

1. Chopper blade (extreme left).
 

2. Angular control wheel for cathode angle positioning.
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RETROREFLECTING QUADRANT MIRROR
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Figure 5
 
Retroreflecting Quadrant
 

Mirror
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3. 	Entrance/exit mirror prism (center right) which
 

obscures the view of the window.
 

CPAMPER WINDOW I 

-- EXIT BEAM 

iPrif EAM --

LIPUT/EXIT PRISM 

PRISM IN RETRACTED POSITION 

4. 	Photometer housing and alignment manipulator.
 

(Black tube at center right). By removing entrance/
 

exit prism, the input beam can be measured directly
 

with photometer.
 

Since light sources for the visible region of the spectrum
 

are considerably brighter than those in the ultra violet region,
 

the problem of signal to noise in the photometer is diminished
 

and a closer degree of correlation between the theoretically
 

predicted absorption of the cathode and the measured values
 

possible. Separation of polarizations is also practical*. The
 

* Polarizers for the UV are inefficient and expensive. 
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Figure 6 
Chopper and chamber
 

entrance window
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actual photo currents from the cathode will have to be kept
 

small due to the intrinsically high surface resistance of
 

ultra-thin cathodes. This is no disadvantage in any typical
 

application of an ultra sensitive device.
 

The position of the reflection photometer photomultiplier
 

tube has been changed in order to take advantage of the
 

higher exit beam intensity available inside the chamber. There
 

is now the option of placing this photomultiplier tube inside
 

the chamber and remotely introducing a mirror into the beam to
 

measure the incident radiation; the option of using the original
 

system which measures the radiation incident upon the vacuum
 

chamber window is retained.
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VII. Details of Micro-Manipulators and Fixtures Used to
 
Manufacture and Test The Photocathodes
 

Manipulators were designed which permit close control 

of the position of the photocathode with respect to the 

incident light beam. In previous designs the cathode could 

be manufactured and then tested in the chamber without 

breaking vacuum, but the lateral and rotational motions of 

the cathode/dynode chain assembly were somewhat limited. The 

new arrangement permits complete shielding of the dynode chain* 

during the evaporation cycle and manipulation of the cathode/ 

dynode assembly over the complete range of angles from 0 to 900 

with the normal. Due to optical limitations, of course, the 

range from 0 to 100 and from 80 to 900 are relatively useless 

since the input light beam diameter has finite size and becomes 

vignetted as the hemicylinder approaches either of these angles. 

At one extreme, the vignetting is caused by the edge of the 

hemicylinder (80 to 900) and at the other limit the vignette 

is caused by the edge of the retro-reflecting quadrant mirror 

encroaching upon the light beam (0 to 100). Both vignetted 

regions are of no interest in ATR cathode experiments. 

The geometry of the system requires that the hemicylinder
 

and cathode under test be rotated 900 from the test position
 

to the evaporate position. This is accomplished by means of
 

a D.C. motor (tested for outgassing under high vacuum). Micro­

switch actuated pilot light indicators provide position read­

out of hemicylinder.
 

A remote, manually operated, precision traverse mechanism is
 

used to provide retraction of the dynode string when the hemi­

cylinder is in the deposition/coat position.
 

* 	 More critical now in view of the reactive evaporants involved 
and their higher inherent vapor pressures. 
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A turntable, with manual remote control, is used with a
 

precision angular read-out disc and cursor.
 

A linear motor driven actuator (cam operated) is
 

incorporated into the existing system carrier; and moves the
 

cathode carrier and dynode assembly laterally with respect to
 

the incoming light beam. The lateral position is read to
 

0.010, from a 1 travel linear potentiometer.
 

Drawings on the following pages, and photographs illustrate
 

the essentials of the mechanism.
 

In Figure 7 the dynode and photocathode
 

manipulator assembly is illustrated at close range. The dynode
 

assembly is shown on a precision slide mounting which enables
 

it to travel forward and backward toward and away from the
 

cathode; the cathode hemicylinder is shown in vertical position,
 

ready for testing. The large cylindrical object in the left
 

foreground is the motor which rotates the cathode from coating
 

position into test position. The retro-reflecting quadrant
 

mirror is shown at the right side of the picture and the electrical
 

mechanism for moving the dynode string toward and away from the
 

cathode is shown on the upper left quadrant of the picture. The
 

linear actuator is visible in the upper right corner of the
 

photograph.
 

The dynode slide is racked completely forward, toward the
 

cathode. Slip clutches are used on all motors to prevent damage
 

to the components and to eliminate the necessity for electro­

mechanical readouts of these two motions. Mechanical stops are
 

used to limit the travel in both directions for both coating
 

and testing. Independent control of the lateral motion of the
 

dynode string and rotary motion of the cathode holder is obtained
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Figure 7 
Rotation Plate - cathode
 

in test position
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through the use of two independent motors. The cathode
 

itself is isolated by means of machined lava insulator
 

blocks so that it can be maintained at 4000 volts negative
 

potential with respect to the anode and ground. Grounded
 

anode operation is always preferred, if possible, due to the
 

elimination of the coupling capacitor (always a source of
 

noise) between the anode and the preamplifier.
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Figure 8 illustrates the dynode/cathode
 

assembly rotated into the cathode coating position. The
 

evaporation baffles have been removed for visibility in
 

order to illustrate the mechanisms. During use, the baffles
 

would be in place to prevent alkali materials from coating
 

the motor, the dynode string, or any portion of the retro­

reflecting quadrant mirror. The perspective seen in the
 

photograph is an off axis view but is close to that seen
 

from the position of the evaporation source used to coat the
 

cathode face. The convex portion of the hemicylinder is facing
 

upward and away from the observer in the picture. A comparison
 

of this photograph with the previous photograph will illustrate
 

that the cathode has been rotated 90 0 and that the dynode string
 

in this picture is in the extreme retracted position in order
 

to allow for the rotation of cathode mounting fixture. A
 

coating mask is shown covering the retro-reflecting mirror.
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Figure 8
 
Rotation Plate - cathode
 

in coating position
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in Figure 9 the entire rotational assembly is
 

illustrated in the 900 incidence position; the cathode and
 

dynode are not clearly visible, however the mechanism for
 

moving the dynode string and rotation of the cathode are
 

seen. The mechanism shown on the vertical axle is a linear
 

actuator used to traverse the entire assembly along the axis of
 

rotation (in this view-up and down) so that different areas of
 

the cathode can be excited by the incident light beam. The
 

lateral motion is accomplished by means of a linear actuator and
 

exact position readout is obtained by means of a linear potentio­

meter which reads accurately to 1/100". The incident light beam
 

travels from left to right in the picture and the prism assembly
 

can be seen on the outside of the metal vacuum plate at the
 

left. The manual rotary angle indicator for adjusting incidence
 

angle is shown at the upper left in a side view.
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Figure 9 
Optical Arm Assembly ­

rotated to 900 incidence 
with cathode 

i 



VIII. Cathode Formation - substrate Preparation 

In the formation of cathodes, both thermal and electron
 

beam evaporation were used. The table below outlines the
 

methods we found most suitable for each material. The
 

criteria for suitability were ease of rate control and
 

purity of the ultra thin layer.
 

Melting Point/ Evaporation
 

Material Boiling Point Method
 

Gold 1063/1405 Wire-filament
 

Platinum 1774/1765 Electron beam bomb
 

silver 961/1105 Wire-Filament
 

Magnesium 651/600* Filament/Basket
 

Cesium 28.5/705§** Reaction Capillary
 

Sodium 97.7/883- Reaction Capillary
 

Potassium 63.7/7740 Reaction Capillary
 

Calcium 842/630 Basket-Crucible
 

Rubidium 390/696- Boat/Crucible
 

Substrate Preparation
 

A standard cleaning procedure has been established
 

which provides the best deposit adherence for most films.
 

This procedure is a consolidation of those obtained from other
 

workers in this field and vendors in our area. It has been
 

experimentally determined that this procedure yields the most
 

uniform results and it is followed as a preparation to all of
 

our in-house coating work.
 

A. Strip previous coating and fingerprints with Acetone
 

and Trichlorethylene rinse.
 

* Sublimes
 

** Obtained from reaction mix.
 

-36­



B. Soak in hot 10% Chromic Acid/Nitric Acid
 

distilled water solution at 1900F for 30 minutes.
 

C. Rinse in distilled water.
 

D. Heat in Alconox or surface active detergent
 

solution for 15 minutes with mild scrubbing using a lint free
 

cotton cloth which has been previously washed in detergent.
 

E. Rinse in room temperature distilled water.
 

F. Wipe with a thick paste of Calcium Carbonate and
 

de-ionized water until an unbroken film of de-ionized water will
 

run over the surface.
 

G. Immediately blow off surface water with filtered
 

prepure ionized dry Nitrogen which removes residual static
 

charge from the surface.
 

H. Place face down on lint free cloth, not paper.
 

NOTES:
 

Do not use Q-tips, cotton swabs or industrial wipers
 

as these all contain vegetable oils in the fibers.
 

Do not use lens tissue or any other material wiped
 

across surface after final Nitrogen blast.
 

I. Place in vacuum chamber and energize glow discharge
 

in Argon at 50-l00p pressure for 10 minutes immediately prior to
 

evaporation. This drives off any residual adsorbed gases.
 

NOTE: Use only Aluminum discharge rings since
 

Aluminum has a very low sputtering coefficient due
 

to easy oxide formation on its surface.
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Noble Metals
 

Gold and Platinum are easily coated in thin films
 

and represent no particular problem except for the very high
 

temperatures necessary for Platinum deposition. Sputtering
 

of Platinum takes place at a lower temperature but at such
 

high gas pressures that gaseous inclusions in a relatively
 

porous cathode result. The consequent contamination represents
 

a significant fraction of the molecules present in the cathode
 

and cannot be tolerated.
 

Magnesium
 

Magnesium was most successfully evaporated from pure
 

ribbon placed in a solid Tantalum basket which was then heated
 
o 

to incandescence. Deposits up to 1500A showed excellent
 

homogeneity and reflectivity in the visible. This material
 

sublimes during evaporation.
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Formation of Alkali Cathodes
 

First attempts at forming ultra-thin layers of
 

Potassium and Cesium were conducted using an indirect chemical
 
25
reaction , due to the reactivity of Cesium and Potassium
 

metals. A combination of Cesium Chromate and Aluminum or 

Potassium Chromate and Aluminum, (all of which were stable at 

room temperature and in atmosphere), were thoroughly mixed
 

and combined as a fine powder and placed in the bore of a small
 

Tungsten or Tantalum capillary tube. The tube is then gripped
 

at each end by an electrical conductor block; a current through
 

this fixture then heats the mixture to incandescence or reaction
 

temperature. When the current ceases and the Tungsten begins
 

to cool, there will be sufficient conduction of heat away from
 

the Exothermic mass within the tube to stop the reaction. In
 

the absence of such a metal tube, the Thermit type of reaction
 

would continue explosively on its own, producing an uncontrollable
 

film thickness, or at least, contaminating the walls of the
 

chamber. A picture of the capillary evaporation source,
 

constructed especially for this work, is shown in Figure 10.
 

while it is extremely difficult to obtain Molybdenum,
 

Tungsten, and Tantalum tubing of the desired size, the degree of
 

control gained by using such a crucible and heating scheme is
 

well worth the effort. The expected evaporation temperatures are
 

400-5000C (onto a cold substrate) for Cesium. For Potassium,
 

the temperatures can be correspondingly higher (up to 700C).
 

In commercial photomultiplier tubes where the thickness
 

of the cathode is not nearly as critical, a less exotic crucible
 

can be used, since the reaction continues to exhaustion. In
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Figure 10
 
capillary evaporation
 

fixture
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fact, these crucibles are usually built right into the tube
 

itself and are made of Aluminum or Nickel. Induction heating
 

would be of no benefit in this application since the reaction
 

rate is the critical factor; the method of heating to initiate
 

the reaction is irrelevant. The critical design consideration
 

is that sufficient heat must be carried away from the Exothermic
 

reaction to stop it when further deposition of the alkali metal
 

is no longer desired.
 

Formation Reactions
 

In this section we describe the various chemical
 

reactions used to obtain the alkali metal cathodes. The various
 

pitfalls involved in using these chemical reactions are noted.
 

It should be mentioned at the outset that pure alkali metals are
 

not used as evaporation materials due to the relatively low purity
 

in which these metals can usually be obtained in raw form and the
 

great difficulty in handling and evaporating them successfully in
 

a complex vacuum system. The control of chemicals such as Cesium
 

(liquid at elevated room or body temperature) in a nonglass vacuum
 

system which must be used for other purposes (including electronic
 

testing), is extremely difficult; the chance of contamination when
 

large amounts of cesium are used is very great. Contamination of
 

diffusion pump fluid is always a possibility.
 

various Chromate and catalytic reactions were tried in
 

order to improve the purity of the deposited product and uniformity
 

of the evaporation. In all cases a shuttering system was used in
 

order to prevent the possibility of a runaway thermit reaction
 

from producing a cathode too thick to be useful. The procedure
 

was essentially the same in all cases: (1) the reaction was
 

started after a complete bakeout of components at a low temperature,
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(2) as the reaction proceeded the shutter was opened during a
 

period of reasonably uniform evaporation, (3) the coating
 

thickness was monitored on the deposit thickness monitor and,
 

(4) the shutter was closed at the conclusion of the thickness
 

buildup-as required. The current input to the reaction basket
 

was then decreased and, in most cases, the reaction stopped
 

immediately. The cathode deposit was then allowed to thoroughly
 

cool in high vacuum on the substrate before over coating the alkali
 

metal with Aluminum in the case of a calibration run. The system
 

is then backfilled and the substrate removed for thickness
 

determination. After each calibration coating, a second filament
 

containing Aluminum was energized and an overcoating of Aluminum
 

was placed over the test step to protect the reactive cathode
 

material beneath. The overcoating of Aluminum was used only
 

during the calibration phase and was necessary since a highly
 

reflective coating is required for accurate measurements using
 

the Fizeau Fringe Interferometer.
 

During cathode formation on a :Lest hemicylinder, no
 

overcoating is used and testing proceeds immediately after coating
 

as itemized in the procedure. 1
 

All reactions were conducted in Tantalum or Molybdenum
 

tubes which were used themselves as the heating elements by
 

passing a current through them. Although the capillary size of
 

these containers was relatively large (3 to 5mam inside diameter),
 

the reaction stopped upon elimination of the current, and the
 

heat transfer to the vessel is assumed adequate. Extremely small
 

amounts (less than 1gm) of the reactants were used so that
 

runaway reactions were not a serious possibility.
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It was established, however, through chemical testing
 

that the thermit reaction which was used, deposited a quantity
 

of Chromium or Chromate of Aluminum which could slightly contaminate
 

an efficient cathode. We have determined that the large bore
 

Tantalum basket used for the early reactions did not carry away
 

sufficient heat to prevent the reaction from "thermal runaway"
 

and depositing by-products at the higher temperature. We are
 

now packing the mixture into lmm bore capillary tubingk* as
 
26


originally planned and are heating to 7000C. The larger
 

surface area to volume ratio of the imm bore tube should keep the
 

reaction from free running and should also lower the production
 

of by-products.
 

The following reactions were tried and the results
 

of these reactions are summarized.
 

Potassium Chromate Reaction
 

3K2CrO4 + 8A1 --- 4A203 + 3Cr + 4K
 

Stoichiometric Proportion:
 

2.698:1 = Potassium Chromate: Aluminum.
 

Use excess Potassium Chromate so that no Aluminum is
 

evaporated.
 

Trial 1: The ratio used in Molybdenum basket for evaporation
 

was 2.7:1 = Potassium Chromate: Aluminum.
 

* Trial II: The ratio used was 2:1 Aluminum: Potassium
 

Chromate by weight.
 

**Use of a hypodermic needle with a Luer tip as a micro funnel
 

aids in the packing operation.
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Cesium Chromate Reaction
 
3Cs2CrO4 + 8A - 4A1203 + 3Cr + 6CS
 

stoichiometric Proportion:
 

5.306:1 = Cesium Chromate: Aluminum.
 

Initially excess Cesium Chromate was used so that no free
 

Aluminum was left to evaporate. This procedure was later found
 

to be incorrect and a second mixture (Trial II) was used for tests.
 
Trial I: The actual ratio used in Tantalum basket was
 

5.31:1 = Cesium Chromate: Aluminum.
 

*Trial II: The ratio used was 2:1 Aluminum: Cesium
 

Chromate by weight.
 

NOTE: Aluminum powder comes finely divided but the various
 

chromates are relatively granular. Crushing the mixture after
 

proportioning is dangerous and not very ;successful. We
 

recommend finely crushing the chromate separately in an Agate
 

crucible and then mixing the finely divided powders together.
 

Good mixing is essential to a complete reaction with few by­

products (contaminants).
 

Raney Nickel Reaction
 

Raney 
Nickel 

3KCrO -SAl A 6K + 3Cr + 4A120 
2 4 2 3 

also 
Raney
 
Nickel
 

3Cs 2CrO4 + 8AI A 6Cs + 3Cr + 4A1203
 

Proportion of catalyst is variable.
 

The 2:1 excess of Aluminum powder proved to be the more
 

27
successful mixture and is, in fact, a commonly used mixture
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Chemical Testing
 

After-the vaporized material was collected on a
 

glass slide, tests were run in order to establish presence of
 

Potassium.
 

First H 0 was dropped on glass. No noticeable amount

2
 

of H2 was evolved. However, when phenolphthalein solution was
 

added, it showed presence of a base (probably KOH). A flame
 

test was done which did not show any violet color (Potassium).
 

A distinct green color was seen on the slide indicating
 

a possibility of Cr contamination.
 

Further tests to examine purity, (eliminate green
 

indicator color) were conducted during the tests.
 

Upon examining the coatings produced from the Trial II
 

mixtures (excess aluminum) no chromate green color appeared. A
 

flame test for sodium indicated positive as did a test for potassium.
 

The cesium flame test was inconclusive but may have been due to the
 

extremely small quantities of cesium present and washing by a slight
 

sodium yellow induction. All test substrates indicated the presence
 

of a basic metal after evaporation. The use of nickel other than
 

tantalum or tungsten capillaries also improves control of evapor­

ation rate.
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IX. Theoretical Analysis
 

The following analysis is appropriate to the test
 

geometry which was used during this study.
 

If we assume a polarized, collimated light bundle incident
 

on a hemicylinder of index nI coated on its plane surface
 

with a cathode material a few atomic layers thick,(index n2 '
 

k2) we can see in this illustration an exaggerated idea of
 

the path such a bundle will follow.
 

INPUT 

The beam is incident on the cathode at an angle 9i or e with 

the normal. It is deflected in the second medium n2 back toward 

the first medium where it can exit the system or be reflected 

by mirrors for a second or third pass through the cathode before 

it is lost to the system. The apparent absorption path length*p 

of the light ray through the cathode will be much greater than the 

thickness of the cathode coating d 

* The increased absorption is due to the high values of the 
electric field vector at the interface. Dissipation in an
 
absorbing medium is proportional to the electric field vector
 
amplitude squared.
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It is this effect which allows high absorption in extremely thin
 

cathodes. The probability of escape of any photoelectrons
 

generated within this extremely thin layer is very high, since
 

only a few collisions will occur.t
 
\ 

Since the concept of Attenuated Total Reflection (ATR)
 

is familiar to most workers, the fine details of the theory

28,29
 

and the appropriate Fresnel' equations for calculating
 

absorption will not be included herd. Rather the appropriate
 

theoretical results will be illustrated. The exact Fresnel
 

equations optimizing the'thickness of the coating appropriate
 

to this simple single pass geometry3 0 are related to the complex
 

indices of the substrate and the cathode material. Their
 

extremely tedious nature lends it'self to automatic data processing
 

with the following interesting results. Note the illustrated sense
 

and direction of the polarization vectors shown in the last
 

drawing; these are appropriate to the next illustration. In the
 

first graph is a plot of the reflected intensity of the parallel
 

polarized light ray exiting the hemicylknder.
 

V .i 

HA varies from 0.002 to 0.02 9teps of 0.002. 
-
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R is plotted versus angle of incidence with the cathode.
par 

This particular family of curves corresponds to a substrate 

index of n = 1.5 which corresponds closely to the quartz 

material used for the hemicylinder. The n2 and k2 appropriate 

to the cathode are 3 and 0.5 respectively. Our initial 

estimates of the cathode constants were made using data from 
31
other workers in ultra thin films3 . -Thevalues are those
 

formerly obtained with gold in the ultra violet region of the
 

spectrum. The family of curves is generated by varying h/lamda
 

(hA)or the ratio of cathode thickness-h to lamda, the 

wavelength. Although it is not possible to see from this 

graph, due to the bunching of lines near the critical angle, 

the peak absorption enhancement corresponds to h over lamda 

equal to .018*. For cathode thickness below and above this 

optimum, the absorption decreases. This enhancement reversal 

occurs at different thicknesses for different cathode indices.
 

The higher the cathode index, the thinner the coating at which
 

enhancement reversal occurs. A later curve will illustrate the
 

behavior of peak absorption versus cathode thickness at the
 

optimum angle and the reversal behavior will become clear. For
 

parallel polarization, peak absorption occurs when Q. = 620 or
 

approximately 206 higher than the critical angle for quartz.
 

In the next graph wetsee data plotted for the perpendicular
 

polarized ray reflected from the cathode.
 

* This can be read from the numerical print-out obtained
 

simultaneously with the graphs.
 

-48­



QI.05 , i 

WLll'c. 002- O 
V& M 

in R family, the enhancement reversal is a little more
 
per
 

clearly visible. However the next graphs will demonstrate
 

behavior of absorbtion versus cathode thickness. For optimum
 

coating thickness in this family h/A = 0.012 and the peak
 

absorbtion occurs near 500 which is approximately 80 larger
 

than the critical angle.
 

The next graph is a plot of the intensity of the per­

pendicular polarized reflected ray versus the cathode thickness
 

hA. 

Jo.N
 

4I15-6 5 
n-05 
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For best absorption*, the optimum cathode index corresponds to
 

= 2. -As seen from the graph, this line represents the
n2 


greatest and broadest absorption. For n2 = 3 (we estimate
 

this index for Gold in UV) the peak absorption occurs at
 

h/A = 0.012. Note, as before, that for very thin cathodes,
 

the absorption increases with thickness up to an optimum
 

point and decreases rapidly above this point. For higher index
 

cathodes this reversal or absorption maxmum occurs at thinner
 

coatings. In our case the optimum coating thickness for per­
0 

pendicular polarized ray absorption is approximately 30A.
 

The next graph shows behavior of the parallel polarized 

ray with cathode thickness. ­

NI-B 
W=25 
V K2 

We can see that the behavior for Rpar is not nearly as strong a 

function of h/A as for R er . The absorption maxima are quite 

weak and for single reflections will not contribute significantly 

to the design considerations. For a cathode index of 2.5 the
 

absorption versus cathode thickness from 25 to 75A thickness in the
 

UV remains essentially constant within 10%. Note as k2 increases
 

the absorption increases as expected.
 

* Least reflection. 
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The next set of curves illustrates the reflection of
 

the perpendicular polarized ray versus cathode thickness
 

where the family is generated as above by varying k21 the
 

absorption constant of the cathode.
 

K2- 05-5 
V KZ 

Again, the absorption increases with the increasing k . The 

index of the cathode is = 2.5 but similar curves result for 

= 3.0. Note the existence of weak but observable absorptionn2 


maxima here which were not present for parallel polarized ray.
 

For randomly polarized illumination, the behavior of the cathode
 

to the perpendicularly polarized component is most important
 

and the optimum cathode design thickness would be primarily
 

based on response to Rper"
 

In the next graph a plot of the perpendicular polarized
 

reflected ray (R er) versus cathode thickness is shown. The
 

family is generated by varying the angle of incidence 0.
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-4 

NZ 50 

Q.42- 46' 

Clearly the optimum angle for perpendicular polarization is
 

the critical angle 420 (when n2 = 5). However the absorption
 

is still greater than 90% at 480.
 

In the next graph we see typical behavior for the parallel
 

polarized ray (Rpar) where 480 is the optimum angle of inqidence
 

and the 420 curve does not have a significant minimum at all. The
 

spread in angular absorption maxima tends to broaden the angular
 

response of the cathode (field-of-view) at the expense of some
 

sensitivity.
 

0 

NI-5 

" 
0 42 t49 
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0 

Noble Metals
 

The following Figure 11, shows the tehroetical predic­

tion of reflection of the s and p-polarized* light waves from a
 

25A coating of Gold on a material with an index of 1.5 at
 
0 

2500A. The two polarizations are averaged to obtain the
 

predicted reflection for randomly polarized light which was
 

used in the initial experiments. Note here, the average peak
 

absorption occurs at the 550 incidence angle. This corresponds
 

to within 30 of our experimental peak enhancement angle for the
 

Gold cathode. The actual measured value of absorption cannot be
 

accurately correlated with this curve, since the calibration
 

of the reflection photometer is not yet considered adequate for
 

complete confirmation.
 

* swave = R 
per
 

p wave = Rpar 
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The next graphs illustrate computer printout of
 

absorption data for a thin UV photoemissive coating of index 3.
 

F~gure 12 is appropriate to the parallel poarized reflected ray and:
 

the Figure 13 family illustrates the reflection of the perpendicular
 

,polarized ray.
 

The equations pertinent to the reflected waves for
 

perpendicular _Z and parallel /t polarization are:
 

112 iL- PI t2 32
 
r = r1 12 2A 1 + 1 2
 

where .	 =n. cos e 33
 
w j 
 after Hansen
 

r 1 El el 2andr 

2 1+12
 

The complex indices which must be used for absorptive
 

coatings make calculation by computer almost a necessity.
 

Several expected types of behavior become clear by observation
 

of the curves.
 

1. Absoattion is enhanced in thinner coatings up to
 

an optimum point.
 

2. Lowering k decreases absorption (observed from
 

vary k2 curves).
 

3. Critical angle remains primarily dependent upon n1
 

(in our case 1.54 for G-E #151 quartz).
 

4. A peak average absorption (J and//rays) occurs in
 

the vicinity of 53-58 degrees.
 

a. peakL absorption lies near 500
 

b. peak//lies near 620
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5. A higher index n1 window or substrate is desirable
 

(see Figure 14 - "vary nl graph) in order for:
 

a. 	More nearly perpendicular incidence
 

b. 	Broadening the angle over which enhance­

ment occurs
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Gold Cathodes
 

Figure 15 illustrates expected theoretical trans­
0
 

mission + absorption (1-Reflectivity) for a SOA Gold coating.
 

In the region below the critical angle (420) almost all'of the
 

incident illumination is transmitted, while in the region between 

420 - 900 a large portion of the radiation is absorbed. The 

exact values for absorption and transmission have been evaluated 

theoretically and the inaccuracy of calibration of our reflection 

photometer has not enabled us to obtain sufficiently accurate 

data for comparison. The significant point is, of course, the 

peak of absorption (-540) which correlates verywell with our 

peak QE enhancement. The correlation of this curve with the
 

Quantum Efficiency enhancement curves included in the results
 

is excellent.
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Introduction to The Alkali Metals
 

The following represents relevant theoretical
 

analysis for alkali metals and their behavior as photocathodes
 

in the ATR mode. The analysis is necessary in order to predict
 

the average behavior of materials, whose precise optical indices
 

are not known accurately enough when the materials are prepared
 

in ultra thin films. Not only are the indices not accurately
 

established, but their behavior with respect to wavelength is
 

even less well known. The analysis is therefore required in
 

order to approximately estimate the best thickness for each
 

type of cathode made from alkali metals. A haphazard approach
 

toward the optimum thickness by successive approximations would
 

be very time consuming and costly.
 

Various materials such as Cesium, Potassium, Sodium,
 

Calcium, and Magnesium all have indices which vary from very

34
 

high value at the plasma frequency 4to a relatively low value
 

and then this value slowly increases as the wavelength increases.
 

The absorption or attenuation constants vary similarly with
 

respect to wavelength*. Both effects serve to enhance each other
 

in the ATR mode which consequently results in a cathode of stable
 

behavior and wide band sensitivity, (with respect to wavelength)
 

as will be shown.
 

* The graphical behavior is roughly analogous to that obtained in 
a parallel resonant electrical circuit. The absorption co­
efficient vs. wavelength behaves similarly to the magnitude of 
the impedance and the index vs. 2 behaves similarly to the phase
 
angle of such a network.
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when the optical index is low, the moderate optical
 

mismatch between the substrate and the cathode creates an
 

intense electric field at the interface which enhances the
 

absorption of radiation. The higher value of the attenuation
 

constant at points where the index is low, however, compensates
 

for the fact-that the electric field at the boundary does not
 

assume such extremely high values as would result if the index
 

of the coating were'very large. At wavelengths where the
 

attenuation constant drops to a relatively small value, the
 

index of refraction is sufficiently large to create an optical
 

mismatch* and the concurrent electric field intensities and
 

absorption enhancement. This high value of the electric field
 

compensates for the low absorption constant of the cathode
 

material-particularly for extremely thin cathodes.
 
I 

Theoretical Predictions for Alkali Metal Cathodes
 

1 36
Typical optical properties of alkali metals exhibit
 

37 
extremely high values of n and k at the plasma frequency with
 

the absorption coefficient k slowly increasing toward the
 

infrared. The refractive index has less spectacular behavior
 

and typically progresses from 0.5 in the UV to 1.538 in the
 

blue-visible region of the spectrum. Lower absorbtion co­

efficients are typical in the ultra violet and higher n and k
 

are prevelant for the alkali metals in the visible region. For
 

most purposes, the minimum cathode refractive index will be
 

0.5 (a reasonable estimated value) and the typical index of
 

refraction will vary from 1 to 1.5 for the cathodes in the visible
 

region. All curves included here are calculated assuming a
 

glass or quartz substrate index of 1.5 (nI = 1.5).
 

* Large electric field vector. 
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The following graph Figure 16 illustrates the wide range 

of n and k over which significant absorption enhancement occurs. 

The curves are plotted for the index of refraction of glass at 4 

450 incidence. Good absorption is obtained for the parallel 

polarization,only (curve 1B) as can be seen from the minimum
 

h/A line 0.05. Here 90% absorption occurs in one reflection
 

and almost total absorption occurs for two reflections. The
 

variation of absorption of the parallel polarized ray with
 

thickness is not significant, and occurs over a-wide range of
 

indices of the cathode. The enhanced absorption behavior for
 

the perpendicular polarized ray (Figure 16) is far less
 

important in this case and unfortunately occurs for a much
 

higher range of indices of the photocathode. This higher range
 

of indices makes the behavior of the perpendicular-polarized ray
 

less important here.
 

In these plots as the index increases the performance
 

of the cathode improves up to a maximum index value of approxi­

mately 0.8, which is very close to the expected value for alkali
 

cathodes in the visible region of the spectrum. Peak absorption
 

occurs in these cases for h/A = 0.05 in the case of the parallel

o 

polarized ray (cathodes approximately 250A thick). We could
 

also typically obtain 90% absorption in two reflections for a
 

15A layer with an index of 0.2 as shown on this second graph
 

Figure 17.
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Figures 18 and 19 illustrate the fact that one can use
 

a material with a low index plus a low absorption coefficient
 

and yet still obtain large enhancement in the ATR mode. Here
 

the index of the cathode n2 is estimated at 0.5 which is a
 

reasonable value for the visible portion of the spectrum. We
 

vary the absorption constant k and notice for a value of k = 0.5
 

or greater we have significant absorbtion. Below a value of
 

k = 0.5 (parallel polarized ray graph) we have no inversion
 

of absorption as we do when k increases to a value of approxi­

mately 1.2. This absorption inversion is one of the peculiarities
 

of the ATR cathode and indicates most directly that the equations
 

predict a decrease in the absorption of radiation as a cathode
 

passes an optimum thickness and becomes heavier. For the
 

parallel polarized ray, with hA = 0.045, we can obtain 100%
 
0 

absorption with a 200A thick layer in a single reflection,
 

(k is = to 1.2 and n = 0.5).
 

Note that when k is less than 0.7 the parallel
 

polarized ray is not sufficiently absorbed unless two reflec­

tions are used*. For the perpendicular polarized ray, the optimum
 

absorption is approximately 48% as indicated on the R graph.
per
 

Throughout the analysis it is obvious that the perpendicular
 

polarized ray and the parallel polarized ray cannot be simultaneously
 

optimized for alkali metals in the visible region of the
 

spectrum. It is also obvious that the parallel polarized ray
 

almost always exhibits significantly higher absorption over a
 

wider range of values of n and k for the cathode. Consequently,
 

it will be standard procedure to optimize the response and thickness
 

of the alkali cathode for the parallel polarized ray unlike the
 

procedure for very high index metallic cathodes in the UV, where
 

the opposite procedure is true.
 

* The criterion for good absorption of incident radiation is
 
about 90% corresponding to about 10% reflection on the graph.
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Angular Dependence (Figures 20 and 21)
 

In the next two graphs we notice that the angular 

region of enhancement shrinks drastically as large thicknesses 

of the cathode are approached. For the perpendicular polarized 

ray we obtain an inversion of absorption at approximately h/A = 
0
 

0.0225 which corresponds to approximately lISA cathode thickness
 

and a cathode index of 0.5. For a low thickness cathode, the
 

angular width of acceptable radiation in the substrate would be
 

approximately 150 (2.5 in air). For larger thicknesses the angle
 

is reduced to approximately 50(7.5 in air) and becomes almost
 

useless for very large input aperture detectors. Although the
 

transparency of these cathodes is low, we could obtain good
 

angular response from materials of high transparency.
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Absorption Inversion With k (Figures 22 and 23)
 

The index of the cathode is again 0.5 and we notice
 

for the first time an inversion of absorption in these plots
 

as krvaries. For the perpendicular polarized ray the absorption
 

has a maximum when k is in the region 2.5 to 2.0; the absorption
 

is less (for a given thickness cathode coating) for both higher
 

and lower values of the absorption coefficient. In the next graph
 

(Figure 23) notice the absorption inversion with
 

" is even more interesting. Here, however, the optimum values of
 

" vary between 0.9 and 1.2 with an absorption maximum occurring
 

near hA = 0.04. This corresponds to a cathode thickness of
 
a 

approximately 200A for (cathode index of 0.5). The perpendicular
 

polarized ray has an absorption maximum of approximately 48%; to
 

achieve this value of absorption would require a cathode with an
 

index of 0.5, an absorption coefficient of 2.0 and a thickness
 
a 

of 400A. Two reflections from such a cathode would result in
 

approximately a 75% absozption of the incident energy. After
 

four reflections* all but 7% of the incident energy would be
 

absorbed. For the parallel polarized ray, (Figure 23), a material
 

with an index of 0.5, an absorption coefficient of 1.0, and a
 
0 

thickness of only 200A will absorb 100% of the incident radiation.
 

Here it makes most sense to optimize the cathode for the parallel
 

polarized ray.
 

The range of k over which absorption is almost
 

independent of both k and h/A is striking in both of these graphs.
 

Both the perpendicular and parallel polarized ray exhibit rather
 

weak dependence upon k and h/A, greater than 98% absorption of
 

the input radiation in the parallel polarization can be obtained
 

* This many reflections precludes the use of an imaging device. 
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over an octave of the spectrum. Note that the thicknesses here
 
o 

are approximately 200A and these ake well within the state of
 

the thin film art particularly at Block Engineering, Inc, Values
 

of k which can be easily obtained range from 0.5 to 2.5. outside
 

this region the absorption decreases to less than 75% in one pass
 

and multiple reflections become necessary.
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On Figure 24 the absorption of perpendicular
 

polarized radiation is not particularly high for low index
 

cathodes and becomes only fair as the cathode index approaches
 

1. There is, however- an absorption inversion in the
 

vicinity of moderate (n2 = 2.0) index cathodes. For an index
 

of 2.0 and a-coating thickness of approximately 200A, almost
 

100% of the radiation will be absorbed (perpendicular,polarization)
 

for a single pass of radiation. As the index of the cathode is
 

increased, the angular region over which the 'enhancementoccurs
 

becomes rather narrow and the optimum cathode thickness also
 
0
 

decreases rapidly. For 200A thick cathodes, the region of en­

hancement for 90% absorption (in a single -pass) extends over
 

1 octave in wavelength. ­

"Particular attention should be paid to the parallel
 

refrected ray absorption illustrated in Figure 25. Note
 

for extreiely thin cathodes there is a peak in absorption when
 

the cathode index approaches 0.2 and another peak in absorption as
 

the cathode index approadhes 4.0, although the peak at 0.2
 

illustrates significantly greater absorbtion (63%) for a single
 

pass of radiation. The absorption enhancement at 4.0 (42% abs.)
 

is primarily caused by the laig6 electric field vector in the Y
 

direction parallel* to the cathode substrate interface. The
 

value of the electric field vector in the Z direction has
 

relatively small values for high cathode index as seen from
 
2
 

Figure 26 where the values E for indices higher than 0.6 are
 
z 

all slightly above the horizontal line near the 0 axis (not
 

clearly defined on plot). For a cathode index of 0.2, however,
 

the value of the electric field in the Z direction reaches an
 

extremely large peak as illustrated by the 0.2 spike on the E
2
 

z 
curve. This extremely intense electric field vector in the Z 

* X and Y are parallel to the interface the Z vector is per­
pendicular to the interface. 
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direction is responsible for the enhanced absorption of radiation
 

of both polarizations in extremely thin cathodes of relatively
 

low index.
 

As a corollary advantage it should be mentioned t~at
 

photoelectrons generated in the presence of an extremely intense
 

Z field are emitted perpendicular to the plane of the cathode and
 

have practically no velocity component in the tangential direction.
 

The advantage of this type of emission is obvious. With an
 

extremely low velocity component in the Y or the X direction,
 

the chances of inter-action between the photoelectron and the
 

cathode material are minimized. Secondly, for such extremely
 

thin cathodes, the electron is emitted either toward the vacuum
 

or toward the cathode substrate interface (where it is totally
 

reflected); almost no eleatron optics are necessary 1n such a
 

photomultiplier to assure all the electrons will be emitted in
 

one diiection-toward the first dynode*. It is true that such
 

behavior results for a relatively narrow band of Wavelengths,
 

however, this band of wavelengths, as with all of our ATR work4
 

can be tailored to the specific region of interest.
 

* A third advantage is the possibility of spectral selection
 

as a function of primary photoelectron energy.
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X. Calibration
 

Deposit Thickness Monitor
 

cathodes of Gold, Platinum, Magnesium, Sodium,
 

Potassium and Cesium were formed in layers up to 200A thick.
 

Quantum efficiency measurements were made after establishing
 

the exact optical thickness of the coating on a substrate similar
 

to that actually used for cathode testing.
 

Our techniques for manufacturing and testing controlled
 

coatings have improved since the inception of the program. New
 

optical measuring instruments have been built and used, and a
 

complete manipulation assembly is now in use enabling a wide
 

variety of ATR cathodes to be thoroughly tested immediately
 

after formation.
 

Extensive cooperation has been obtained from the
 

Sloan Instrument Corporation.to improve and tailor the evapora­

tion thickness monitor for the ultra thin film deposit region.
 

Cathode Coating calibration
 

The following cathode materials have been used for
 

calibration of the deposit thickness monitoring instrumentation.
 

Atomic Relativ
 
Material Deposition Method Weight Densit
 
1. Gold Filament 196.967 19.32
 
2. Platinum E.Beam Bombardment 195.09 21.45
 
3. Aluminum Filament 26.9815 2.6989
 
4. Magnesium Filament (Raw Material) 24.312 1.738
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Atomic Relative 
Material Deposition Method Weight Density 

5a. Potassium Raw Material (Basket)' 39.102 0.862 
b. Potassium Complex Reaction (Basket) 39.102 0.862 
6. Sodium Raw Material (Basket) 22.9898 0.971 
7a. Cesium - Complex Reaction (Basket) 132.905 1.873 
b. Cesium* Raw Material* 132.905 1.873 

Previously described procedures were used to calibrate
 

thickness of deposit using a Fizeau'Fringe Interferometer. Over­

coatings of Aluminum were necessary to create a uniformly
 

reflective surface and to prevent reaction of the alkali metals
 

with the air.
 

A series of stepped deposits of the cathode material are
 

coated on a quartz optical flat simultaneously with and in close
 

geometrical proximity to the resonant crystal deposit monitor.
 

A record of frequency deviation vs. coating thickness is then
 

obtained for each new material. Although the calibration curves
 

will have slopes relatively proportional to the bulk density of
 

the material (particularly for very thick coatings near lk) the
 

bulk and thin film densities of all materials are in general
 

vastly different and so the resonant crystal must be calibratbd
 

for each materiai and in the same coating thickness region as
 

will be monitored.
 

The stepped optical flats are examined under a
 

Michelson interferometer with white and monochromatic light to
 

examine surface irregularity and determine crude step height
 

(fringes are too broad for accurate measurement). The stepped
 

flats are then examined under a specially constructed Fizeau
 

Fringe Interferometer which requires contact between a "proof"
 

flat and the sample.
 

* Glass capillary system - test aborted. 
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In order to obtain the necessary accuracy, extremely
 

narrow, easily resolved, high contrast fringes are necessary.
 

These are obtained only from high reflectivity sample coatings.
 

In the case of Gold, Platinum and even thin Magnesium coatings,
 

their reflectivities are high enough, but Cesium, Sodium and
 

Potassium exposed to air, oxidize rapidly and could destroy the
 

coating of the "proof" plane unless they were overcoated. For
 

this purpose, an overcoating of Aluminum is used immediately
 

after depositing the alkali metals in order to increase the
 

reflectivity and protect them from the air during thickness
 

measurement. The Aluminum effectively shadows the step and does
 
0
 

not introduce an error due to its own thickness (below 2000A).
 

Eventually the active metals discolor the Aluminum overcoat
 

necessitating optical thickness measurements soon after coating.
 

Thus the alkali metals present special problems in thickness
 

determination. In particular, the vapor pressure of Cesium at
 

room temperature necessitates close control of quartz crystal
 

monitor temperature, otherwise erratic thickness readings will
 

result. A recirculating thermal bath has been installed for this
 

purpose. Potassium was evaporated first since it is easier
 

to control and there is less danger of contamination of the vacuum
 

system.
 

Three photographs showing a 500Hz, 1000Hz, and 2000Hz
 
0 0 0 

step of Magnesium corresponding to 445A, 990A and 1980A of this
 

material are shown for illustration in Figure 27.
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MAGNESIUM STEPS
 

Step Height: 445 A'
 
Crystal Monitor Af: 500 Hz.
 

Step Height: 990 AO
 
Crystal Monitor af: 1000 Hz.
 

Step Height: 1980 A'
 
Ctystal Monitor af- 2000 Hz.
 

Figure 27
 
Fizeau Fringe Photographs
 

Magnesium Steps
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Film Resistance
 

In order to explore other possible thin film deposit
 

controls, several slides were made which enabled us to measure
 

the ohms-per-square resistance of the mass deposit obtained on
 

a standard microscope slide. Extremely poor correlation between
 

the deposit thickness or deposit mass and the resistance obtained
 

on the surface of the slide even when using rate control. A
 

short series of tests along these lines proved to our satisfaction
 

that such a resistance monitor would not be suitable especially for
 

cathodes in the ultra thin region of interest.
 

Optical Film Density
 

Figure 28 illustrates the poor correlation
 

obtained between optical density of coatings of aluminum and the
 

actual mass deposit. Poor correlation could be due to re­

crystallization phenomena or the fact that monochromatic light
 

was not used in the densitometer. In any case, Block feels
 
* 

that interferometric thickness measurement (accurate to + 15A) 

is appropriate for cathode thickness control. 
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The following curves are plots of the actual working
 

calibration curves for the deposit monitor. Operation of the
 

mass monitor as based on a resonant frequency shift caused in
 

a quartz crystal as a mass deposit builds up on its surface.
 

Details are not included here but a thorough treatment of this
 

technique is found in reference 39. The significant point is that
 

thicknesses of the higher density materials can be controlled
 

more accurately than the lighter materials such as Al or Mg.
 

The calibration points (not plotted) were obtained by coating
 

precision optical flats to various mass readings (frequency
 

deviations) on the monitor, and subsequently examining the optical
 

step produced using a Fizeau fringe and Michelson interferometer.
 

Using the Sodium D doublet for illumination,accuracaes of + 20A
 

obtain as a matter of routine. For most accurate results Block
 

has assembled a Michelson interferometer using fringes of equal

a 

chromatic order (FECO) which allows accuracy of 7-10A. This is
 

unnecessary for most measurements and is difficult to use.
 

As coatings become thinner, the densities of deposit
 
40 0
 appear to vary and P may actually approach 0.5 for I0A films of
 

some metals. Platinum and Gold do, however, seem to deposit
 

almost uniformily down to monolayers.
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Calibration of Detectors - Establishment of
 
Absolute Quantum Efficiency
 

In order to establish the actual quantum efficiency
 

(Q.E.) obtained by the ATR technique, it is necessary to perform
 

absolute Q.E. measurements in the monochromator/vacuum chamber
 

system. The establishment of standard sources and calibration
 

in the near ultra violet has been done with great difficulty in
 

the past and our experience is no exception.
 

We have obtained two calibrated thermocouples (T.C.)
 

from Charles Reeder, Inc. These units were calibrated using a
 

tungsten standard lamp with black body irradiance at the detector
 

window of 46.2 watts/cm
22 . The primary calibrating source had
 

almost no U.V. output. We have assumed our thermocouples have
 
0
 

a good blackbody absorbtion characteristic down to 1900A which,
 

as anyone who has tried to make UV reflectors understands, is a
 
43
 

reasonable assumption. The thermocouple window is BaF2 and is
 
0
 

transparent to 1500A.
 

As an example one T.C. has a sensitivity of 12.98V/
 

pW and it has a 21i internal impedance.
 
0
 

Using the following scaling factors at 2000A
 

9.93 x ergs per photon @ A = 2000A
 

iR watt Z 1014 photons/second +2%
 

For our T.C. the scale factor would then be
 

12.98sV pW 12.9itV 

PW 1014photon/second 1014photons/sec. 

or lIV =-7.70 x 10 photons/second.
 

-96­



Using the T.C. to calibrate our RCA 7200 photometer,
 

we obtained in our system: (using mercury line 2537A)
 

7 	 0 
1 volt = 3.16xi0 photons/see. @ 2537A for photometer/
 

reflectometer
 

Ip volt = 31.6 photons/sec.
 

Across 1 megohm ip Amp = 3.16xlO7 photons/sec.
 

NOTE: Since all detectors were calibrated and cross checked using
 

the same chopper and synchronous amplifier, no scaling due to
 

duty cycle or amplifier characteristics need be done.
 

Calculations-Thermocouple
 

0.001496 Lumens = 1 watt;
 

2 7 
h = 6.624 x 10- erg.sec 

1 Joule = 1 watt-sec = 10 7ergs 
0 	 -6 =
A 2000A= 0.2 x 10
 

S= hP
 
=c 

ph =h 3x108m/sx6.624x10-27meter-erg 

2 x 10-7m 

;h 	= 9.93 x 10- 12ergs/photon
 

= 9.93 x 10- 19Joule/photon(watt-sec/photon)
 

1 photon/second = 9.93x109watts=9.93x10-3iwatts
 

P 	 E R = E21Q
 

E2 
= 21x9.93x10-13 watts ohms = 209x10-1 3 P volts2 

-7 
E
Eh =4.57 x 10 -Volts/photon
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14 0 
lpwattT.C. = 1.007'x 10 photons/sec @ 2000A 

Calculations - Photometer
 

Type 7200 RCA Photomultiplier
 

S/N U35340
 

Cathode Sensitivity 54.0 pA/Lumen
 

Anode Sensitivity 26A/Lumen @ IKV­

65 x 103A/watt*
 

-
Dark Current 6 x 10 9 Amp. (@20A/Lumen)
 

Anode sensitivity 26A/Lumen or 65000A/watt
 

SA = 0.065 A/pwatt
 

Measured dark current was 200mv in 1071
 

8
v 2x10l 2lc
= 107
n l2x10 A = 0'.02A
 

which is within a factor of 4 of specified value.
 

2 x 10-8A -8
 
30.8xlO 8watt = 3.08x10-7watt
0.065A/pwatt 


ip watt (® 2000A) = 1.007 x 10 photons/sec.
 

1.007 x 1014 x 3.08 x 10- 7 = 3.1 x 107 photons dark level
 

Since the photometer is primarily used for relative measurements of
 

energy incident vs. energy reflected', it can operate at a higher
 

level of illumination and the high level of dark current is not
 

relevant.
 

* Luminous and power sensitivities are not related in UV tubes. 
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As a check on the stability of the calibration of the
 

thermocouple and photometer a constant radio-active UV source
 

was used whose output remains constant to l % per year.
 

Included in this report for reference are calibration curves
 

for our UV standard radio-active source. Sources for blue and
 

green regions of the spectrum are being used at present.
 

Total radiated flux from the source is evaluated using
 
0
 

our Reeder Thermocouple which is flat to 1400A. Relative
 

emittance is obtained from graph in Figures 36 and 37, which is
 

specifically prepared for each source. Note that the source has
 

relatively broad band emittance over a very wide range.
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XI. Results and Recommendations
 

summary of conclusions and Results
 

1. Relative quantum efficiency improvements of 100%
 

(a factor of 2) with thin gold layers have been obtained. This
 

corresponds to a 100% ± 20% gain in absolute quantum efficiency
 

over commercially reported Gold cathodes in transmission or
 

reflection (approximately 10-4 electrons per photon, peaked at
 

2000A).
 

2. We have established techniques for producing
 

monolayers and thicker coatings of Gold, Platinum, Aluminum,
 

Magnesium, Cesium, Sodium and Potassium with accuracies of
 
0 0 

+ 5A for the heavier metals and + 20A for the light metals. 

Preliminary techniques have also been established for coatings
 

of Magnesium, Sodium, Potassium, and Cesium with a required
 

accuracy inside a previously sealed envelope.
 

3. Our study has resulted in the fabrication of a
 

high quantum efficiency metallic totally solar blind cathode of
 

Magnesium.
 

4. Gold solar blind cathodes with extremely rapid
 

wavelength cutoff have been produced. We feel, however, these
 

cathodes are still far from optimum and even greater improvement
 

is possible with further work in the ultra violet.
 

5. We have demonstrated some of the characteristics
 

of ultra thin cathodes and have compared the results to date with
 

theoretical calculations. In those areas we feel our data is
 

most reliable (quantum efficiency vs. angle) significant agreement
 

has resulted. Other areas (absolute absorbtion vs. angle and vs.
 

polarization)-are still undergoing refinements so that we may put
 

more faith in our measurement technique.
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6. For thin films of Gold, Aluminum, Platinum,
 

Magnesium and the alkali metals very little uniform data is
 

available concerning optical parameters. We have had to
 

establish at least the approximate values of n and k by
 

examining absorbtion of the coatings. Using the present
 

experimental technique fore knowledge of n and k would only
 

establish a region of coating thickness within which experiments
 

would have to be carried on. The optimum thickness for best
 

absorption enhancement must still be determined by experiment.
 

7. Alkali metal cathodes have been produced by
 

indirect chemical reactions with peak quantum efficiencies from
 

1 to 5%. This approaches the quantum efficiency of the alkali
 

antimonide cathodes with pure alkali metals. Further work on
 

alkali metals is proceeding.
 

Review of Previous Results
 

Plots of several solar blind cathode-materials,
 

gathered from various manufacturets and recent literature, are
 

combined to scale in Figure 38. The particular cathodes of
 

interest for this report are Gold and Magnesium with a peak
 

QE of 10 at-2000A and a QE of 1.5 x 10 at 2500A for Gold.
 

Note the complete lack of visible response tail.
 

For an optimum solar blind cathode, Block recommends
 

Magnesium metal over Cs 2Te for the following reasons:
 

1. The long "visible response tail" of Cs2Te is
 41,42
 

thought to be 'ue to an absence of excess Cs in the cathode.
 

The exact nature of the visible response is not yet completely
 

understood by 'manufacturers and has yet to be uniformly con­

trolled.
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2. Magnesium is amenable to theoretical ATR
 

enhancement of almost a factor of 10 with a two pass prism
 

system. It would have no visible tail, since enhancement can
 

be made to scale all wavelengths almost uniformly and can be
 
a 

peaked at 2000-2200A..
 

3. Magnesium could compete favorably with Cs2Te in
 

QE while being much more immune to poisoning and degradation.
 

Our maximum enhancement is shown as dotted line on curve at
 

-4 .
2 x '10


Reference sources: (curves)
 

1, 2, 3, 4, EMR Photomultiplier Division
 

EMR-Ascop
 

5, 6 Kretschmar, A Solar Blind Photodiode Having Maximum
 

Sensitivity in the Middle Ultraviolet, NOLC, Corona,
 

Report tNo. 554, 15 October 1961.
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Gold Cathodes
 

Figure 39 illustrates the actual
 

photoelectronic current vs. angle for a thin gold cathode. The
 

pertinent data are indicated on the graph sheet. Only four runs,
 

of the ten performed, are included here for clarity. Figures 40
 

and 4L are averages of ten runs, with a standard deviation
 

of 3% in readings, for two different cathode thicknesses. Actual
 

quantum efficiency level was obtained using a calibrated UV
 

thermocouple with BaF2 window supplied and calibrated by Charles
 

Reeder (blackbody source calibration). See calibration of
 

detectors.
 

A line corresponding to a quantum yield of 10- 4 + 20%
 

(our estimated calibration error) is drawn on the y axis to
 

illustrate typical peak behavior of competitive Gold, solar
 

blind, commercial, cathodes. Typical response curves for solar
 

blind cathodes, and for Gold are shown in Figure 39.
 

The runs plotted represent the response to the band of
 
o 0 

wavelengths from 1900A to 2537A. The response between 0-100
 

cannot be measured due to vignetting of the input beam by the
 

retro-reflecting mirror. We do not consider this a serious
 

problem.
 

It should be noted, from absorption graphs and our
 
0 0
 

enhancement curves for 25A and 20A cathodes, that the thinner
 

coatings were superior cathodes. Here is proof that a thinner
 

layer can be made a more efficient photoemitter by enhancing its
 

absorption. The assumed k = 3 of the theoretical curves is
 

probably on the low side and, in agreement with several other
 

workers, the actual k2 for thin Gold film in the UV may actually
 

approach 4 or 5.
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Absorption vs. angle measurements have been made and
 

correlate roughly with the theqretical graphs. The calibration
 

of the absorption photometer has been an extremely difficult
 

and tedious process. The long optical paths involved in getting
 

the light beam into and again out of the vacuum chamber have
 

made the reliability of this measurement somewhat questionable
 

and is included primarily since it represents a check on our
 

optimization procedure, rather than an absolute confirmation
 

of our theory.
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Magnesium Cathode
 

As a temporary conclusion to the ultra violet phase
 

of .this work, an optimized Magnesiuq cathode was deposited on
 
0
 

the quartz hemzcylinder. A 40A thickness appeared to be optimum
 

for a single pass,however only brief measurements were made at
 

very low illumination levels. Further optimization would certainly
 

be possible, however this work clearly indicated no response
 

measurable in the cathode at wavelengths longer than 3200A.
 

This data is being analyzed and is included in the research
 

report along with interpreted data on the alkali metal cathodes.
 

Alkali Metal cathodes
 

The cathode coatings for use in the violet and blue
 

regions of the visible spectrum are consid@rably thicker than
 

those which must be used in the ultra violet and vacuum ultra
 

violet region of the spectrum. In fact, the estimqted coating
 

thicknesses progress from 75 to 200A in thickness for the blue and
 
0
 

visible regions, compared to 5, 10 and 50A thicknesses in the ultra
 

violet region of the spectrum. optimum thickness must be determined
 

by experiment.
 

We have on hand computer plotted graphs for all of the
 

previously described cathodescoated on a material of index 1.3
 

such as the fluorides. Such materials are unnecessary in the
 

visible spectral region and are needlessly expensive. The possibil­

ity of contamination and cathode poisoning are also increased by
 

the use of halogen substrates and we have been given to understand
 

by manufacturers that the possibility of coating multi-alkali
 

cathodes on such substrates is extremely remote. A program for
 

generating curves for sapphire substrates (where nI = 1.7) has
 

been completed in order to evaluate input aperture improvements
 

possible due to the higher index of the substrate.
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Calibration
 

In order to establish actual quantum efficiencies
 

at various wavelengths, a Reeder thermocouple was used to
 
2
 

calibrate,the input-energy in watts per cm at the cathode.
 

A quartz iodine source (2900K) and monochromator (grating
 
a 

blazed for 3000A) were used during this procedure and the
 

calibration curve in Figure 46 takes into account the combined
 

output response of the entire illumination system. All spectral
 

curves shown in the data section have been normalized to the
 

curve illustrated in Figure 46.
 

ALKALI METALS
 

Sodium
 

Only one preliminary 'curve of sodium is shown and
 

it is for a relatively thick (200A) cathode. The response
 

peak is well into the ultra-violet and indicates the cathode
 

thickness is far above optimum for sodium even though the peak
 

-
quantum efficiency, 5 x 10 3 , is relatively high. A typical
 

work function for sodium is 2.29 electron volts corresponding
 
0 0
 

to a -ma of about 5800A. Our cutoff at 3250A definitely
max
 

indicates an ATR cathode which is much too thick. Most materials,
 

metals in particular, become less transparent in the ultra-violet
 

and,the shift of the peak response toward the UV indicates that
 

the cathode is absorbing significantly more radiation at the short
 

wavelengths and hence the cathode thickness is well past the
 

optimum absorbtion thickness for this material. Figure 47 further
 

illustrates the typical extremely rapid cutoffs we have obtained
 

with almost all thin cathodes in general. Since the expected
 

response of sodium would have extended well out to at least
 
0 

5000A (if optimum response was obtained), it was not anticipated
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that the UV source would be needed for this particular work and
 

consequently the curve appears severely skewed to the short wave­

length side of the available spectral response range. Only the
 

incandescent source was used for the alkali metals.
 

Potassium
 

Figure 48 and 49 illustrate spectral response for two
 

different coating thicknesses of potassium on quartz. The thick­
0 0
 

nesses illustrated are 100 and 200A respectively with the 100A
 

thickness of potassium exhibiting the higher peak quantum
 

efficiency. The flatening of the response tail toward the ultra­

violet illustrated in Figure 49 is probably due to the fact that
 

the material is becoming more effective an absorber as the
 

illumination extends further into the UV.
 

The increase in response at longer wavelengths-in the
 

thinner cathode indicates the approach toward an optimum thick­
0 

ness, which is probably somewhat less than 100A for potassium.
 

The cathode is not thin enough to illustrate an extended red
 

response of any significant magnitude. We expect that this
 

extended red response would begin to make itself apparent at
 
o 0 

thicknesses from 50A down to 10A. Again, as with most of the
 

ATR cathodes, the response curve becomes more brpad as the
 

optimum thickness is approached. This broadening is present in
 

spectral response and angular response.
 

Cesium
 

In Figure 50 we illustrate an average of several runs
 
0
 

obtained with a 200A thick coating of cesium. We experienced
 

great difficulty in coating cesium in controlled layers due to
 

instabilities noted in the deposit thickness monitor. These
 

instabilities took some time to correct and in the time remaining
 

-113­



for useful work under this program we made as many runs as
 

possible using a relatively thick cesium cathode. Again our
 

peak quantum efficiency of 3 x 10 is significantly higher than
 

has been reported before with cesium cathodes of a much thicker
 

nature. An additional series of tests performed using deposited
 

monolayers of cesium on a quartz substrate proved fruitless, either
 

because the lateral resistence of such a cathode is so high or
 

because the monolayer of cesium may possibly have become
 

contaminated due to adsorbed impurities on the surface of the
 

quartz. This is less of a problem as the cathode grows thicker
 

and may not have been noticed with the thicker cathodes, It is
 

interesting to note that the major deviation in data from run to
 

run occurred at the relatively low angles of incidence between
 

250 and 450 and that the uniformity of response with angle from 45o
 

to 750 was significantly greater. This is illustrated by the 3 cross
 

marks superposed on the graph in FIgure 50,located on the 350,
 

400 ,and 450 lines. These illustrate the lowest response obtained
 

during any runand serve to indicate the type of deviation between
 

tests which was typically present during this series. Further
 

details on the interpretation of the cesium, potassium, and
 

sodium data are available in the Research Report which has been
 

forwarded to NASA Ames under separate cover.
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Conclusions and Recommendations for Future Work
 

At the conclusion of this report period, Block
 

Engineering, Inc. has demonstrated the applicability of the
 

ATR technique successfully applied to photoemissive cathodes
 

in the ultra violet and blue-visible regions of the spectrum.
 

While these measurements have not led to a final design for a
 

production photomultiplier tube employing such cathodes, they
 

have proven the feasibility of the technique and indicated
 

agreement between the experimental results and the theoretical
 

equations which predict enhanced absorption of the incident
 

radiation.
 

Confirmation of the different behavior of parallel and
 

prependicularly polarized incident light add further confirmation
 

to the theory and indicate that the present method for obtaining
 

computer plots of absorption vs. hA is a sound procedure.
 

Difficulties in the construction of equipment to
 

manufacture and subsequently test photocathodes without breaking
 

vacuum took considerable effort during the program although these
 

problems were expected. Photometer measurements of the absorption
 

of incident radiation, even at the conclusion
 

of the program, were not of comparable accuracy to the quantum
 

efficiency measurements. A recommendation for future design in
 

this area would be to incorporate a moving photomultiplier within
 

the vacuum housing which could be moved to the appropriate angle
 

to sense the remaining reflected light after a single pass through
 

the hemicylindrical photocathode substrate. This would eliminate
 

the use of the retro-reflecting quadrant mirror and its associated
 

optical problems. Any difficulty of moving such a photomultiplier
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at twice the angle of rotation of the cathode is far outweighed
 

by the difficulty in aligning a-retro-reflecting system and the
 

difficulty in obtaining retro-refldcting components. We would
 

recommend that future programs carrying this work further into the
 

visible and the'infrared region would utilize such a movable
 

photomultiplier arrangement in order to confirm, with much greater
 

accuracy than was possible during the present program, the
 

absorbtion of the'parallel and perpendicularly polarized rays vs.
 

angle of incidence and vs. wavelength.
 

Block recommends retention of the present experimental
 

equipment and technique which allows coating and immediate testing of
 

the cathodes. A measurement of absorption of parallel and
 

perpendicularly-polarized rays could also 'e made versus cathode
 

thickness. The use of hemicylinders, diffused quartz, enables
 

the spectral range from ultra violet thibugh the visible to be
 

used while assuring a minimum probability of poisoning the cathode
 

after'deposition. Although the hemicylinder-is not the most
 

convenient shape to work with mechanically, it does represent
 

probably the optimum research geometry for work on ultra thin
 

cathodes in the AT mode.
 

Further work on metal oxide cathodes of the S-1 type
 

and a few alkali antimonides should be carried on, if
 

possible, with the assistance of a competent vendor for such
 

cathodes in ord&r to avoid the common pitfalls inherent in
 

learning photocathode technology. Silver-oxygen-Cesium cathodes
 

can also be investigated in thin films. 'in the manufacture of
 

* Cesium antimonide is the easiest semiconducting photoemissive. 

cathode to manufacture. We recommend it be attempted first. 
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exide type cathodes, Block Engineering, Inc. believes that the
 

Attenuated Total Reflection technique and the associated accuracies
 

required in deposition are incompatible with typical cathode
 

manufacture, and in fact, can only be successfully carried on
 

by people who have specialized-in very accurate thin film
 

measurements. It is for this reason that we recommend such
 

work be carried on by ourselves although we­

must learn the multi-alkali cathode technology rather than
 

cathode specialists, who must then learn ATR theory and thin
 

film control technology, which we believe to be far more
 

complicated.
 

More work should be conducted on the complex multiple
 

internal reflection geometries. Complex geometries are
 

possible as stated previously which allow multiple passing
 

of the incident beam through the cathode. Among these geometries
 

are the multi-reflection Uniline system illustrated here and the
 

multiple reflection Unipoint system shown next which allows the
 

use of extremely small and hence noise free cathodes
 

BEAM BEAM 

Multiple internal reflection unihne sy3sit MULTIPLE INTERNAL 

REFLECTION UNIPOINT 

SYSTE4
 

-126­



Materials heretofore too transparent for use as
 

cathodes can be enhanced in absorption and used as cathdoes
 

efficiently. Such materials should be tested.
 

Reduced transit time dispersion results from the use
 

of ultra thin cathodes since energy loss of emitted photoelectrons
 

is less and consequently there is a smaller spread in their
 

kinetic energies as they cross the cathode/vacuum interface. This
 

effect should be investigated.
 

Extended infrared response may be possible if it is
 

feasible to utilize the lower work functions found in ultra thin
 

cathodes by other workers. ATR offers a method for effectively
 

coupling to these cathodes.
 

An extension of response of the S-1 type surface to 1.6
 
44
 

and even 1.7 has been reported. The lowering of work function
 

is apparently due to dipole layer effects when cathodes are made
 

so thin that the substrate surface affects their polarization.
 

New work in Gallium Arsenide thin films has shown response to
 
45
 

1.6 . Both references report difficulty in obtaining adequate 

absorption of incident photons for practical use at present. 

In summary, the ATR technique offers a method for
 

enhancing the absorption of very thin or non-absorbing cathode
 

materials without reducing their spectral sensitivity or field­

of-view.
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APPENDIX I
 

XII. Optics 

One of the main problems associated with the photo­

meter measurement was obtaining an adequate retro-reflecting
 

mirror for use with the optical system. The mirror must
 

have an extremely high surface polish, be relatively rugged
 

and of an extremely accurate figure in order that the exit
 

beam be displaced laterally and remain exactly parallel to
 

the entrance beam. Several vendors have tried to make this
 

mirror, but none of the mirrors we have obtained from out­

side sources have exceeded the specifications which we were
 

able to achieve in-house. Since the main purpose of this
 

component is to achieve accurate absorbtion vs. incidence
 

angle measurements and since the mirror is not used in the
 

determination of absolute quantum efficiency, we have decided
 

that extensive further investigation with this geometry is
 

not warranted or desirable due to the large expense of obtaining
 

additional optics in this geometry. We suggest to other workers
 

in this field that an alternate arrangement be used whereby the
 

reflection photometer photomultiplier be actually moved at
 

twice the angular rate of the cathode itself, The photometer
 

tube then monitors the reflected beam inside the vacuum
 

chamber without attempting to re-exit the beam onto an
 

external photometer.
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XIII. Retro-reflecting Quadrant Mirror
 

The Retro-reflecting Quadrant Mirror (RQM) serves the
 

purpose of redirecting the light beam, reflected from the cathode,
 

back through the hemicylinder-displaced " laterally. This 

redirected ray emerges from the hemicylinder parallel with the
 

entrance beam but displaced by inch and then travels to the
 

photometer. Although the RQM can be cut into one quadrant of
 

the hemicylinder, this increases the cost of the hemicylinder
 

by a large factor. Since each hemicylinder can be stripped
 

and recoated only a few times without repolishing, it is more
 

economical to use only one RQM and a less expensive set of
 

hemicylinders, although alignment between the two is more tedious.
 

The RQM is manufactured from cut and polished type 404,
 

or 304 stainless steel or 2024-T6 Aluminum. An overcoat of
 
0 

800A of freshly evaporated Aluminum on either substrate serves
 

to improve UV reflectance and completes the operation. No
 

overcoating of Silicon Monoxide can be tolerated for short wave
 

UV work. The particular geometry used is illustrated in Figure 45.
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XIV. Hemicylinder
 

Figure 46, included for reference an completeness,
 

illustrates the working sketch used to manufacture two ATR
 

hemicylinders inexpensively from one striation free (G.E.
 

type 151) UV quartz window.
 

We have found that these specifications have provided all
 

the necessary optical quality while retaining maximum economy.
 

This data is included as an economy aid and suggestion for those
 

doing similar work.
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XV. Multiple Internal Reflection Cathode (Multipass)
 

As part of the current effort, 4 multiple reflection 

substrate (Internal Reflection Element) has been proposed 

for the present experiments. A Calcium Fluoride prism 

would be optimum in the UV region, but for visible reponse 

cathodes, quartz, or even glass is more suitable:gQuartz 

with its higher index and inert properties is unlikely to 

poison complex or alkali metal cathodes, but glass with a 

Calcium ion concentration reduces the mobility of cathode ions 

and hence may be a better substrate for complex multi-alkali 

cathodes. The proposed geometry, which is compatible with our 

present dynode string and coating system, is outline4 in 

Figure 47 on the following page. 
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