16,884 research outputs found
Methods for Evaluating Respondent Attrition in Web-Based Surveys
Background: Electronic surveys are convenient, cost effective, and increasingly popular tools for collecting information. While the online platform allows researchers to recruit and enroll more participants, there is an increased risk of participant dropout in Web-based research. Often, these dropout trends are simply reported, adjusted for, or ignored altogether.
Objective: To propose a conceptual framework that analyzes respondent attrition and demonstrates the utility of these methods with existing survey data.
Methods: First, we suggest visualization of attrition trends using bar charts and survival curves. Next, we propose a generalized linear mixed model (GLMM) to detect or confirm significant attrition points. Finally, we suggest applications of existing statistical methods to investigate the effect of internal survey characteristics and patient characteristics on dropout. In order to apply this framework, we conducted a case study; a seventeen-item Informed Decision-Making (IDM) module addressing how and why patients make decisions about cancer screening.
Results: Using the framework, we were able to find significant attrition points at Questions 4, 6, 7, and 9, and were also able to identify participant responses and characteristics associated with dropout at these points and overall.
Conclusions: When these methods were applied to survey data, significant attrition trends were revealed, both visually and empirically, that can inspire researchers to investigate the factors associated with survey dropout, address whether survey completion is associated with health outcomes, and compare attrition patterns between groups. The framework can be used to extract information beyond simple responses, can be useful during survey development, and can help determine the external validity of survey results
Detoxification in rehabilitation in England: effective continuity of care or unhappy bedfellows?
There is evidence that residential detoxification alone does not provide satisfactory treatment outcomes and that outcomes are significantly enhanced when clients completing residential detoxification attend rehabilitation services (Gossop, Marsden, Stewart, & Rolfe, 1999; Ghodse, Reynolds, Baldacchino, et al., 2002). One way of increasing the likelihood of this continuity of treatment is by providing detoxification and rehabilitation within the same treatment facility to prevent drop-out, while the client awaits a rehabilitation bed or in the transition process. However, there is little research evidence available on the facilities that offer both medical detoxification and residential rehabilitation. The current study compares self-reported treatment provision in 87 residential rehabilitation services in England, 34 of whom (39.1%) reported that they offered detoxification services within their treatment programmes. Although there were no differences in self-reported treatment philosophies, residential rehabilitation services that offered detoxification were typically of shorter duration overall, had significantly more beds and reported offering more group work than residential rehabilitation services that did not offer detoxification. Outcomes were also different, with twice as many clients discharged on disciplinary grounds from residential rehabilitation services without detoxification facilities. The paper questions the UK classification of residential drug treatment services as either detoxification or rehabilitation and suggests the need for greater research focus on the aims, processes and outcomes of this group of treatment providers
Experimental investigation on environmental control of a 50-person mine refuge chamber
Air quality and thermal environment of mine refuge chamber (MRC) are very important to determine the physical safety of refugees. Accurately assessing the environmental load and taking reasonable measures are critical to achieve the environmental control goals of MRC. In order to evaluate the metabolic parameters of occupants and the effectiveness of environmental control measures in a MRC, in this research, 50 adult men entered a MRC laboratory for an 8-h test. During the test, the compressed O 2 cylinders and air purification devices were used to ensure the indoor air quality. The possibility of using chemical adsorbents to passively scrub CO 2 and the performance of dehumidification by mine compressed air (MCA) were also investigated by simulation experiments. The results indicated that: (1) The per capita metabolic rates of O 2, CO 2 and heat during the refuge process are 0.34–0.37 L/min, 0.34 L/min and 117–128 W, respectively. (2) When Ca(OH) 2 particles are used as CO 2 adsorbent, the air purification device has both dehumidification and CO 2 scrubbing functions, and three air purification devices could make the CO 2 concentration below 0.8% with the relative humidity below 76%. When Ca(OH) 2 particles are packaged to passively scrub CO 2, the amount of adsorbent may increase significantly. (3) When MCA is used for dehumidification in a MRC, the air volume of 0.15 m 3/min per capita could maintain the relative humidity close to 60%. (4) In the early stage of disaster avoidance, the indoor ambient temperature rises rapidly within 1 h followed by a slight increase
The current population of benchmark brown dwarfs
The number of brown dwarfs (BDs) now identified tops 700. Yet our
understanding of these cool objects is still lacking, and models are struggling
to accurately reproduce observations. What is needed is a method of calibrating
the models, BDs whose properties (e.g. age, mass, distance, metallicity) that
can be independently determined can provide such calibration. The ability to
calculate properties based on observables is set to be of vital importance if
we are to be able to measure the properties of fainter, more distant
populations of BDs that near-future surveys will reveal, for which ground based
spectroscopic studies will become increasingly difficult. We present here the
state of the current population of age benchmark brown dwarfs.Comment: 2 pages, 1 figure, to appear in the conference proceedings "New
Technologies for Probing the Diversity of Brown Dwarfs and Exoplanets",
Shanghai, 19-24 July, 200
Is the Yb2Ti2O7 pyrochlore a quantum spin ice?
We use numerical linked cluster (NLC) expansions to compute the specific
heat, C(T), and entropy, S(T), of a quantum spin ice model of Yb2Ti2O7 using
anisotropic exchange interactions recently determined from inelastic neutron
scattering measurements and find good agreement with experimental calorimetric
data. In the perturbative weak quantum regime, this model has a ferrimagnetic
ordered ground state, with two peaks in C(T): a Schottky anomaly signalling the
paramagnetic to spin ice crossover followed at lower temperature by a sharp
peak accompanying a first order phase transition to the ferrimagnetic state. We
suggest that the two C(T) features observed in Yb2Ti2O7 are associated with the
same physics. Spin excitations in this regime consist of weakly confined
spinon-antispinon pairs. We suggest that conventional ground state with exotic
quantum dynamics will prove a prevalent characteristic of many real quantum
spin ice materials.Comment: 8 pages (two-column), 9 figure
Investigation of fiber/matrix adhesion: test speed and specimen shape effects in the cylinder test
The cylinder test, developed from the microdroplet test, was adapted to assess the interfacial adhesion strength between fiber and matrix. The sensitivity of cylinder test to pull-out speed and specimen geometry was measured. It was established that the effect of test speed can be described as a superposition of two opposite, simultaneous effects which have been modeled mathematically by fitting two parameter Weibull curves on the measured datas. Effects of the cylinder size and its geometrical relation on the measured strength values have been analyzed by finite element method. It was concluded that the geometry has a direct influence on the stress formation. Based on the results achieved, recommendations were given on how to perform the novel single fiber cylinder test
Introducing willingness-to-pay for noise changes into transport appraisal: an application of benefit transfer.
Numerous research studies have elicited willingness-to-pay values for transport-related noise, however, in many industrialised countries including the UK, noise costs and benefits are still not incorporated into appraisals for most transport projects and policy changes (Odgaard et al, 2005; Grant-Muller et al, 2001). This paper describes the actions recently taken in the UK to address this issue, comprising: primary research based on the city of Birmingham; an international review of willingness-to-pay evidence; development of values using benefit transfers over time and locations; and integration with appraisal methods. Amongst the main findings are: that the willingness-to-pay estimates derived for the UK are broadly comparable with those used in appraisal elsewhere in Europe; that there is a case for a lower threshold at
1
45dB(A)Leq,18hr1 rather than the more conventional 55dB(A); and that values per dB(A) increase with the noise level above this threshold. There are significant issues over the valuation of rail versus road noise, the neglect of non-residential noise and the valuation of high noise levels in different countries. Conclusions are drawn regarding the feasibility of noise valuation based on benefit transfers in the UK and elsewhere, and future research needs in this field are discussed
Relativistic Ring-Diagram Nuclear Matter Calculations
A relativistic extension of the particle-particle hole-hole ring-diagram
many-body formalism is developed by using the Dirac equation for
single-particle motion in the medium. Applying this new formalism, calculations
are performed for nuclear matter. The results show that the saturation density
is improved and the equation of state becomes softer as compared to
corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A
potential, nuclear matter is predicted to saturate at an energy per nucleon of
--15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm, in
excellent agreement with empirical information. The compression modulus is 152
MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon
request), UI-NTH-92-0
- …