8,787 research outputs found

    Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers

    No full text
    We have demonstrated Si/Ge hole-tunneling double-barrier resonant tunneling diodes (RTDs) formed on flat Ge layers with a relaxation rate of 89% by our proposed method; in this method, the flat Ge layers can be directly formed on highly B-doped Si(001) substrates using our proposed sputter epitaxy method. The RTDs exhibit clear negative differential resistance effects in the static current–voltage (I–V) curves at room temperature. The quantized energy level estimation suggests that resonance peaks that appeared in the I–V curves are attributed to hole tunneling through the first heavy- and light-hole energy levels

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    Space charge and charge trapping characteristics of cross-linked polyethylene subjected to ac electric stresses

    No full text
    This paper reports on the result of space charge evolution in cross-linked polyethylene (XLPE) planar samples of approximately 220 ?m thick. The space charge measurement technique used in this study is the PEA method. There are two phases to this experiment. In the first phase, the samples were subjected to dc 30 kVdc/mm and ac (sinusoidal) electric stress level of 30 kVpk/mm at frequencies of 1 Hz, 10 Hz and 50 Hz ac. In addition, ac space charge under 30 kVrms/mm and 60 kVpk/mm electric stress at 50 Hz was also investigated. The volts off results showed that the amount of charge trapped in XLPE sample under dc electric stress is significantly bigger than samples under ac stress even when the applied ac stresses are substantially higher. The second phase of the experiment involves studying the dc space charge evolution in samples that were tested under ac stress during the first phase of the experiment. Ac ageing causes positive charge to become more dominant over negative charge. It was also discovered that ac ageing creates deeper traps, particularly for negative charge. This paper also gave a brief overview of the data processing methods used to analyse space charge under ac electric stress

    Multiscale Technicolor and the Zbb-bar Vertex

    Full text link
    We estimate the correction to the Zbb-bar vertex arising from the exchanges of the sideways extended technicolor (ETC) boson and the flavor-diagonal ETC boson in the multiscale walking technicolor model. The obtained result is too large to explain the present data. However, if we introduce a new self- interaction for the top quark to induce the top quark condensate serving as the origin of the large top quark mass, the corrected R_b=Gamma_b/Gamma_h can be consistent with the recent LEP data. The corresponding correction to R_c=Gamma_c/Gamma_h is shown to be negligibly small.Comment: 9-page LaTex fil

    Granularity and Efficiency

    Get PDF

    A mode-coupling theory for the glassy dynamics of a diatomic probe molecule immersed in a simple liquid

    Full text link
    Generalizing the mode-coupling theory for ideal liquid-glass transitions, equations of motion are derived for the correlation functions describing the glassy dynamics of a diatomic probe molecule immersed in a simple glass-forming system. The molecule is described in the interaction-site representation and the equations are solved for a dumbbell molecule consisting of two fused hard spheres in a hard-sphere system. The results for the molecule's arrested position in the glass state and the reorientational correlators for angular-momentum index =1\ell = 1 and =2\ell = 2 near the glass transition are compared with those obtained previously within a theory based on a tensor-density description of the molecule in order to demonstrate that the two approaches yield equivalent results. For strongly hindered reorientational motion, the dipole-relaxation spectra for the α\alpha-process can be mapped on the dielectric-loss spectra of glycerol if a rescaling is performed according to a suggestion by Dixon et al. [Phys. Rev. Lett. {\bf 65}, 1108 (1990)]. It is demonstrated that the glassy dynamics is independent of the molecule's inertia parameters.Comment: 19 pages, 10 figures, Phys. Rev. E, in prin

    Origins of ferromagnetism in transition-metal doped Si

    Get PDF
    We present results of the magnetic, structural and chemical characterizations of Mn<sup>+</sup>-implanted Si displaying <i>n</i>-type semiconducting behavior and ferromagnetic ordering with Curie temperature,T<sub>C</sub> well above room temperature. The temperature-dependent magnetization measured by superconducting quantum device interference (SQUID) from 5 K to 800 K was characterized by three different critical temperatures (T*<sub>C</sub>~45 K, T<sub>C1</sub>~630-650 K and T<sub>C2</sub>~805-825 K). Their origins were investigated using dynamic secondary mass ion spectroscopy (SIMS) and transmission electron microscopy (TEM) techniques, including electron energy loss spectroscopy (EELS), Z-contrast STEM (scanning TEM) imaging and electron diffraction. We provided direct evidences of the presence of a small amount of Fe and Cr impurities which were unintentionally doped into the samples together with the Mn<sup>+</sup> ions, as well as the formation of Mn-rich precipitates embedded in a Mn-poor matrix. The observed T*<sub>C</sub> is attributed to the Mn<sub>4</sub>Si<sub>7</sub> precipitates identified by electron diffraction. Possible origins of and are also discussed. Our findings raise questions regarding the origin of the high ferromagnetism reported in many material systems without a careful chemical analysis

    Calculation of the spectrum of 12Li by using the multistep shell model method in the complex energy plane

    Full text link
    The unbound nucleus 12^{12}Li is evaluated by using the multistep shell model in the complex energy plane assuming that the spectrum is determined by the motion of three neutrons outside the 9^9Li core. It is found that the ground state of this system consists of an antibound 1/2+1/2^+ state and that only this and a 1/21/2^- and a 5/2+5/2^+ excited states are physically meaningful resonances.Comment: 9 pages, 5 tables, 7 figures, printer-friendly versio

    Characterization of carbon nanotubes synthesized from hydrocarbon-rich flame

    Get PDF
    The present study focuses on the characterization of carbon nanotubes (CNTs) synthesized from flame under an atmospheric condition. A laminar flame burner was utilized to establish a rich premixed propane/air flame at the equivalence ratio Φ = 1.8-2.2. The flame was impinged on a stainless steel wire mesh coated with nickel (Ni) catalyst to grow CNTs. Distribution and yield of the CNTs on the substrate were quantified. Carbon nanotubes formed on the substrate were harvested and characterized using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and thermogravimetric analysis (TGA). The FESEM micrograph showed that the CNTs produced were in disarray. The synthesized CNTs were an average of 50-60 nm in diameter while the length of the tubes was in the order of microns. TGA analysis showed that 75% of CNTs were present in the sample and the oxidation temperature was 510°C
    corecore