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1. INTRODUCTION 

1.1. Background and Motivation 

When rounding to a grid is considered, three possible ways of computing the 

sample estimates ( e.g., the sample mean, the sample median, and least-squares 

estimate, etc.) of population parameters might be considered. 

1. Compute exactly and round the sample estimates computed on the basis 

of the exact Xj's, denoted by (^)r-

2. Round and compute the sample estimate exactly, on the basis of the 

r o u n d e d  % ^ ' s ,  d e n o t e d  b y  ( O r ) -

3. Round -Y^'s and, in addition, round the sample estimate computed on the 

b a s i s  o f  t h e  r o u n d e d  - Y ^ ' s ,  d e n o t e d  b y  { 6 r ) r -

The analysis of relative efficiency asymptotics in the above first and third cases 

involves large deviations in a natural way, reminiscent of Bahadur's [2,3] and Ba­

hadur and Rao's [4] asymptotic comparison of tests. The "outside rounding" in {6)r 

and {9r)r has the effect of converting comparative variance ratios to comparative 

large-deviation rates. 
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The "inside rounding" in (dr) and (^r)r was first considered in Sheppard's 

correction (see Kendall and Stuart [31]). Also, "inside rounding" has been consid­

ered in the context of order statistics by David and Mishriky [20]. Kempthorne 

[30], Giesbrecht and Kempthorne [23], and Lambert [34,35] considered the asymp­

totic maximum-likelihood theory for "inside rounding" from the point of view of the 

asymptotic maximum-likelihood theory for parametrized multinomial distributions. 

We are primarily concerned with the first rounding case, with 6 taken to be 

the sample mean, the sample median, and least-squares estimates. The rounded 

sample mean and the rounded sample median Me, respectively, are computed 

by rounding the sample mean % and the sample median M to the nearest point of a 

grid {2ei ; i = 0, ±1, ±2,...}, e assumed greater than zero, with upward rounding 

when X or M falls half-way between two grid-points. The rounded sample median 

Me is also computable as the median of rounded sample values. Rounded least-

squares estimates bj ^. in regression models are computed in similar fashion. 

Hammersley [26] considered, among other matters, the asymptotic relative ef­

ficiency (ARE) of the above rounded sample median Me with respect to the above 

rounded sample mean X^, as estimates of a Normal population mean fi restricted 

to a uniform grid of mesh size 2e. Here, via the theory of large deviations (Bahadur 

[2,3]; Bahadur and Rao [4]), we extend Hammersley's work, to a certain class of 

"TEIFR" distributions in order to examine the Normal multivariate case and the 

Normal p-variate regression model. 

Asymptotic comparison of Xe and Me would be especially appropriate if one or 

the other could be shown to be fully efficient in some sense; say, for example, if X^ 

(respectively. Me) could be shown in some sense to be most precise among unbiased 
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grid-valued estimators of a grid-valued Normal (respectively, Laplace) population 

center fi. Such results, however, seem not to be available. Of course, in those 

cases where the distribution of X or of M is symmetric about fi and decreases 

monotonically on either side of /^, the rounded versions Xe or Me maximize the 

likehhood of X or M over the grid. In addition, Hammersley [26] pointed out that 

Xç is the maximum likelihood estimate for fu, under Normality (as is under the 

Laplace distribution). Hammersley [26] did attempt a Cramer-Rao analysis for the 

Normal case, hoping thereby to obtain a benchmark for X^, but left unresolved 

the question of obtaining a sharp lower bound for the variance of any unbiased 

estimate of the grid-restricted Normal mean. Somewhat more conclusive evidence 

was obtained by Ghosh and Meeden [22], who showed that X^ is admissible in the 

Normal case among all grid-valued estimators, when estimating a grid-valued fj,, for 

loss functions L{n,d) = W[ii — d) such that W{t) is non-negative symmetric and 

increasing in |/|, with W{2je) < K{2je)'"', j = 1,2,..., for some u, K > 0. 

Whereas the sample mean is an average of iid random variables {X^ ; i  =  

1,2,... ,n}, a least-squares estimators bj in the p-variate Normal regression model 

is a linear function of non-iid random variables {Yj^ ; i = 1,2,..., n,}, though, 

i n  f a c t ,  w h e n  t h e  c o r r e s p o n d i n g  p o p u l a t i o n  p a r a m e t e r s  f S j  i s  s u b t r a c t e d  f r o m  b j ,  

bj — I3j reduces to a linear function of iid random variables. Here we consider 

the asymptotic variances and covariances of the rounded least-squares estimators 

( R L S E )  6 ^ ' ,  w h e r e  ^ j ^ e j  o b t a i n e d  b y  r o u n d i n g ,  t o  t h e  g r i d  o f  m e s h  s i z e  2 e j ,  

the least-squares estimator of /3j for j = 1,2,...,p. The asymptotic variances 

and covariances of these rounded regression estimates are analyzable in terms of 

univariate and bivariate large deviations, in a manner analogous to the analysis of 
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the rounded sample mean Xe-

We may define joint asymptotic efficiency (JAE) as the determinant of the 

asymptotic variance-covariance matrix. The JAE of the RLSEs in the p-variate 

regression model is a function of the sum of the large-deviation rates for the asymp­

totic variances of the individual RLSEs, since the asymptotic covariances are neg­

ligible. Multivariate large deviations are also used to study rounded sample means 

and rounded sample medians in the multivariate setting, under a certain bivariate 

analogue of the TEIFR condition. As in the Normal regression case, multivariate 

JAEs of rounded sample means and rounded sample medians involve summations 

of univariate large-deviation rates. This is illustrated for the Normal and Laplace 

distributions. 

A possible, albeit non-linear, context for RLSEs is provided by the work of 

Sankoorikal, Danofsky, David, Hendrickson and Tollefson [39]. That investigation 

had the aim of devising methodology for locating the vibrating rod among a two-

dimensional grid of rods in a nuclear reactor core; vibration signal magnitudes at 

certain detector sites within the core were modeled as dependent regression vari­

ables, with expectations expressed as (non-linear) functions of the respective known 

detector locations and the unknown 2 dimensional coordinates of the vibrating rod. 

Thus the rod location was a grid-valued two-dimensional regression parameter ap­

pearing in several non-linear regression equations (one each for the several detector 

sites), and the proposed estimate of the location of the vibrating rod is obtained 

by rounding (to the nearest point of the two-dimensional grid of rods) the vector 

regression coefficient estimated on the basis of the several observed detector signal 

magnitudes. 
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1.2. Findings 

We consider the rounded sample mean and the rounded sample median Mg 

as estimates of the grid-valued location parameter fx under a certain class of "two-

sided extended IFR (TEIFR)" distribution. The role of the TEIFR assumption 

is to insure that the tails of the distribution of - /i fall off quickly enough to 

make the comparison of asymptotic probabilities of large (beyond e) deviations of 

the location-normalized sample median M — fi and sample mean % — /i relevant 

to the comparison of their asymptotic mean-square errors (MSEs). A finding is 

that a TEIFR distribution possesses a moment generating function, as well as tail 

probabilities that satisfy a condition necessary for the large-deviation treatment of 

the rounded sample median Me. Thus the asymptotic mean-square errors of the 

rounded sample median Me and the rounded sample mean Xe are formulated via 

the theory of large-deviation (Bahadur and Rao [4]; Bahadur [2,3]). We find the 

following: 

Suppose a random sample { X ^  ; i  = l,2,...,n} is drawn from a TEIFR 

distribution whose location parameter is /i and whose variance is cr^. Then the 

asymptotic mean-square error MSEn{Mf) of the sample median rounded to the 

grid {2ke ; A; = 0, ±1, ±2,...), satisfies 

\ n M S E n { M e )  - ln[2(i?e(l - Re))^l\ 

where 

i?e = max{Pr(X^ —  f x  >  e ) ,  Pr(%^ -  / ^  <  -e)}. 

And the asymptotic mean-square error MSEm{Xe) of the sample mean, rounded 
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to the grid { 2 k e  ; A: = 0, ±1, ±2,...), satisfies 

-1 - e2 
Hm m  \ - a M S E m { X e )  =  g (1 + 6(e)), 

m—*cx ^ '  2a'^ 

when e is sufficiently small, where m  denotes sample sizes, and the function 6 { - )  

satisfies 

lim S i t )  — 0. 
e^O ^ 

The asymptotic relative efficiency eg of with respect to is found, when 

6 is small, to equal; 

eg = -2o-2e-2(l + 6(g))-l ln[2(i^e(l - Ag))^^]. 

The asymptotic relative efficiency eg is computed as the limiting ratio of "equivalent 

sample sizes" n and m. 

We find eg to be surprisingly sensitive to distribution shape, as well as to the 

grid mesh size and eg is right-continuous in e at e = 0. In other words,if the 

population distribution possesses a density / in a neighborhood of /x, then 

lim eg = 4/2(;u.)cr2, 
e—>0 

the RHS being the usual asymptotic relative efficiency eg of A/ vs. X for populations 

possessing finite variance and a density in a neighborhood of the population median. 

We make the point in this connection that "continuity at zero" does not hold for 

the form of asymptotic efficiency dealt with by Hammersley [26]. A finding related 

to the continuity of eg at e = 0 is that, within the TEIFR class, the "asymptotic 
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effective variance" in the sense of Bahadur [2] of the sample median M equals its 

asymptotic variance as usually defined. 

We expand the analysis of eg to e's of arbitrary size, in the special Laplace 

and Normal cases. We point to a certain equivocal behavior of asymptotic relative 

efficiency away from e = 0 in the case of the Laplace distribution. Which of Me 

and Xç is more efficient turns out to depend on the value of e. No such equivocal 

behavior occurs in the Normal case, where the increasing superiority of A'g over Me 

with increasing e is conveniently quantified via a certain quartic lower bound for a 

s y m m e t r i c  v e r s i o n  o f  M i l l ' s  r a t i o  R { e ) :  

• IS  

These last findings derive from comparing the rates of decrease of the proba­

b i l ities of large (beyond e) deviations, respectively of \M — fj,\ and |X — jj,]. Hence 

they pertain as well to the comparison of the asymptotic error rates of certain tests 

based respectively on M and since these tests' asymptotic error rates essentially 

are themselves large deviation rates. Thus the findings have testing counterparts. 

We also consider the asymptotic variances and covariances of the rounded least-

squares estimators (RLSEs) b j  g. in Normal p-variate regression models, in terms 
J  

of the large deviations of Pr(|6j - ( 3 j \  > ^ j )  and Pr(6^ — /3^- > e^, b j  -  ( B j  >  e j ) ,  

respectively, where b^ is the least-squares estimator of the grid-valued parameter /3^ 

for i = 1,2,... ,p, rounded to the grid. The asymptotic variances and covariances of 
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these rounded regression estimates are analyzable in terms of their large deviations 

in a manner analogous to the analysis of the rounded sample mean Xe. 

To implement the regression analysis, some lemmas extend to the è^-'s the 

treatment of large deviations of sample means in Bahadur and Rao [4] and Bahadur 

[2,3]. These lemmas yield large-deviation rates for regression parameter vectors b: 

lnPr(6 - g > 6) = + OTl(l), 

where F is the variance-covariance matrix of b. 

The asymptotic variances and covariances of the RLSEs are formulated as 

follows: 

The asymptotic variance Varn{bj g .) of the RLSE 6; ̂  obtained by rounding, 
• ' ' J  • ' ' J  

to the grid { 2 k e j  ; = 0, ±1, ±2,...), satisfies 

-1 ^7 -
' 

where Q is a positive definite matrix such that lim^—>oo X_ = Q and Qj j is 

the { j , j )  element of Q .  

The asymptotic covariance Covnib^ f:.,b^ ^.) of the RLSEs 6,- . and 6. .., V t,Cj j , C j  J  ' >  J  

rounded the grids (2fce^, ; fe = 0, ±1, ±2,...) satisfies 

where corr^j is the correlation between b^ and bj, and 



s g n { x )  =  

1 if a; > 0, 

0 if z = 0, 

— 1 if a: < 0. 

The analysis is illustrated with the simple regression model. 

The joint asymptotic efficiency (JAE) may be defined as the determinant of the 

asymptotic variance-covariance matrix, say F®, leading to the JAE of the RLSEs 

in the form 

1 ^ 1 
lim n ln|F®| = lim n InVar j i i b j  p . )  

»00 ' ra—>00 ^ 
i=l 

A 2-2 

Considered next are not-necessarily-Normal multivarite sample means and me­

dians, treated by bivariate large derivations similar to those introduced for the 

regression analysis. For j = l,2,...,p, let be a random sample from a 

certain p-variate distribution F .  Assume that E { X ^ j )  = jXj. Each X j  and M j  

is rounded to the nearest point of the uniform grid 2ej, denoted by Xj ̂  . and 

Mj g ., respectively. Then the asymptotic variances and asymptotic covariances of 

—e ( 1,62 ' '^2,62 ' • • • ' ÂLe ~~ ( -^1,6^ ' -^2,62 ' " " * ' 

considered. In order to examine the asymptotic covariances, the bivariate distribu­

tions are assumed to be such that both Pr(%2 —/Lij > %2 ~ ̂ 2 — ^2) = ^^1)^2 

and Pr(%2 ~ n — , ^2 ~ /^2 — ^2) = ,^2 are appropriately quadrant-
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symmetric, and bivariate log-concave in positive 62), a property that we can 

call the "Two-sided Extended Bivariate Increasing Failure Rate (TEBIFR)". 

Bahadur and Rao's treatment of the univariate behaviors of large deviations 

can be extended to the multivariate case for sample means and to the bivariate case 

for sample medians: 

The asymptotic variances of the rounded sample mean and the rounded sample 

median have been already considered. The preceding relations make possible the 

computations of the asymptotic covariances of the estimators: 

We thus obtain the matrices of the asymptotic variances and covariances of 

rounded sample means and rounded sample medians, leading to the possibility of a 

comparison of Xg and Mg in terms of the joint asymptotic efficiencies (JAEs). It is 

found that the JAEs of 2Le and M.e &re the summations of univariate large-deviation 

rates: 

n M n P r ( X  -  ̂ >  e )  =  I n p j ^ ( e )  +  0 7 7 , ( 1 ) ,  

where Pjr{e) is defined as min^[exp(-^^d 

n ~ ^ l n P T { M i  -  i i i >  e i ,  M 2  -/i2 > ^ 2 )  = + On(l), 

where PM{n^^2) is defined as min/. . ^ [exp(-^ - V' (4,^2)]-

corr. 

and 

n \ n s g n [ c o r r i j ) C o v n { M i ^ ^ . ,  g ) = ln/>^(ej, e_^-)-
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and 

i=i 

These computations are illustrated using the Normal and Laplace distributions. 

1.3. Review of Large Deviations 

Before discussing our research it will be beneficial to recall certain standard 

results concerning large deviations. 

Billingsley [14] described large deviations to estimate Pr(F > a), where F is a 

discrete random variable assuming values yj with probabilities pj, and a is positive. 

Assume that 

< 0, (1.1) 

Pr(y > 0) > 0. (1.2) 

Let be the moment generating function of Y. Then <;i'(0) < 0 by 

(1.1), and (j>[t) —» oo as < —> oo by (1.2). Since ^(i) is convex, it has its minimum p 

at a positive argument r: 

ird(i}{i) = <^(T) = p, 

where 0 < p < 1, and r > 0. 

For all positive t, Pr(F > 0) = Pr(e^^ > 1) < by Markov's inequality, 

and hence 

Pr(y > 0) < p. 

Billingsley [14] also provided a lower bound for Pr(F > 0). 
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Those bounds motivate our understanding to the asymptotic behavior of Pr(F > 

0). In this connection, Billingsley [14] gave the following theorem by Chernoff: 

Chernoff's Theorem 

Let independent, identically distributed simple random 

variables satisfying E{Xn)  <  0 and Pr(Xrx > 0) > 0, let (j){t) be their 

common moment generating function, and put p = inf^ Then 

Km n~^ lnPr(Xi + • • • + Xn > 0) = In/j. • 
n^oo ^ '  

Bahadur and Rao [4] extended Chernoff's Theorem, which dealt with simple 

random va r i ab l e s ,  t o  con t inuous  r andom va r i ab l e s :  Le t  a  be  a  cons t an t ,  —oo  < a  <  

oo, and for each n = 1,2,... let 

yn = PrC^l+'" + -^" >a). 
n 

The distribution of is assumed to be such that pn > 0 for each n, and that 

Pn 0 as re ^ oo. The objective of their paper was to obtain an estimate of pn, 

say qn, which is precise in the sense that, as re —> oo, 

—  =  1  +  o ( l ) .  
Pn 

The essentials of their approach are as follows: 
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Let < be a real variable, and let ( j ) ( t )  denote the moment generating function of 

Xi, i.e., Define 

Let T denote the set of all values t for which (j){t) < oo. Suppose that Pr(-.Y]^ = 

a) ^ 1, that r is a non-degenerate interval, and that there exists a positive r in the 

interior of T such that ^(r) = inf^-0(0 = P-

Let — -^1 — and let F be the (left-continuous) distribution function of 

F{y) = Pr(l j < y). Let G be defined as G{z) = ! -oQ<y<z  dF{y) (the 

so-called exponential centering of F ) .  Since JEJ(e^^l) = '^(r) = /î, G is clearly a 

probability distribution function. Let Zj be a random variable distributed according 

to G. Bahadur and Rao [4] show that the moment generating function of exists 

in a neighborhood of the origin, and that 

E{Zi) = 0, 0 < Var{Zi) < oo. 

Further, denoting Var{Zi) by they obtained 

( j ) { T )  

Again, with a defined by 

a = err, (0 < a < oo), 

and Z i , Z 2 , . •. an iid sequence distributed according to G, let 

Un 
Z-^ + •••-(- Zji 

x/ncr 

and 

H n { x )  = Pr(J7n < x ) ,  (-oo <  x  <  oo). 
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Then Bahadur and Rao [4] gave the lemma: 

Lemma 2 of Bahadur and Rao [4] 

Pn = 

where 

This lemma leads to the conclusion of ChernofF's Theorem for continuously 

distributed X-^ as follows: 

Since 0 < Hn{ x )  — HniO) < 1 for every n  and a; > 0, we have 7% < 1 and hence 

Pn ^ for every n, by Lemma 2 above. Let e be a positive constant. Then 

X 
fOO 

In > y/noc exp{ - y / nax ) [ H n { x )  —  H n i O ) ] d '  

roc 
>  [Hn ie )  —  H n {0 ) ] \ / na  J  exp{  — y /nax )d i  

= [Hnie) - Hn{0)] exp(—y/nae). 

Hence liminfri—>oo{-^ In/n} > —ae. Since /n < 1 for every n, and 

arbitrary, it follows that ^^ln/72, = o(l). Hence 

n ^ In Pn = In p + 0(1). 

since e is 
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Bahadur provided the following additional background material: for each n — 

1,2,..., let Tn — Tn{xi, X2, - • •, xn) be a statistic such that the sequence {7n} is a 

consistent estimate of real location parameter 6. Bahadur [2] defined the asymptotic 

effective standard deviation of Tn as the solution r of the equation Pr(|T^ — ^1 > 

e\6) = Pr( |#1 > e/r)  when n is  large and e is  a  small  posit ive number,  where N 

denotes a standard Normal variable. 

Let Sn = Under the assumptions in Bahadur and Rao [4], the 

asymptotic effective variance of the sample mean of n independent identically dis­

tributed random variables exists and equals n~^ times the variance of each random 

variable Xj, as usually defined. A result of Bahadur [2] (with N denoting a stan­

dard Normal random variable) is provided by 

Lemma 2.4 of Bahadur [2] 

jy An,(e) is  defined by 

Pr(|5'Ti/Tt|>E) = Pr(|#|>6/A^(e)) 

for e  >  0  and n  =  1 ,  2 , . . then 

n-^oo 
lim lim {nA^(e)} = E{x'^) 
c_,n 72-^OO 'l'\ '•> \ ' 

Equivalently, 

77. F" 2 
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where 

lim lim SnU) = 0. 
e_^Q 72—»oo ^ ' 

The preceding results provide the basis for this dissertation. 

1.4. Overview 

Under a certain class of distributions called TEIFR, Chapter 2 provides the 

large-deviation derivation of the asymptotic relative efficiency e^ of the rounded 

sample median vs. the rounded sample mean Xg, in a sense related to the 

concept (Hodges and Lehmann [27], Bahadur [2,3]) of Hmiting ratio of equivalent 

sample sizes. 

Chapter 3 examines the behavior of e^ for e near zero and compares eg with the 

asymptotic relative efficiency used by Hammersley [26]. It also expands the analysis 

of Chapter 2 to e's of arbitrary size, for the special Normal and Laplace cases, with 

interesting conclusions regarding grid size, and compares the asymptotic error rates 

of certain related tests based on X and M. 

Chapter 4 considers the asymptotic variances and covariances of the rounded 

least-squares estimators (RLSEs) bj in the Normal p-variate regression model 

under certain assumptions on the explanatory vector X. The discussion is illustrated 

by the simple regression model, and the joint asymptotic efficiency (JAE) of the 

RLSEs is described. 

Chapter 5 extends the ideas of granularity and rounded asymptotic efficiency 



17 

sample means and medians to the multivariate case. 

Chapter 6 considers alternative forms of rounding. 
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2. UNIVARIATE GRANULARITY AND RELATIVE 

EFFICIENCY 

2.1. Introduction 

Consider the rounded sample mean Xf, and the rounded sample median Mg as 

estimates of the grid-valued location parameter /i under a certain class of TEIFR 

distributions. The asymptotic mean-square errors (MSEs) of the rounded sample 

median A/g and the rounded sample mean Xg are formulated via the theory of 

large-deviation (Bahadur and Rao [4]; Bahadur [2,3]). 

.Suppose a random sample { X ^  ; i  = l,2,...,n} is drawn from a TEIFR 

distribution with location parameter /x and variance cr^. Then the asymptotic mean-

square error MSEn{Mf) of the sample median, rounded to the grid (2fc€ ; k = 

0, ±1, ±2,...), satisfies 

^ l i ^ n - ' ^ l n M S E n { M e ) ^ l n [ 2 { R e i l  

where 

Re = max{Pr(%^ — jU > e), Pr(%^ - < -e)}. 

And the asymptotic mean-square error MSEm{Xe) of the sample mean, rounded 

to the grid {2ke ; = 0, ±1, ±2,...), satisfies 

1 - e2 
lim m \nMSEm{^e )  =  » (1 + 

m—>oo 2(7'^ 
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when e is sufficiently small, where m denotes sample sizes, and the function 6(') 

satisfies 

lim S(e) = 0. 
e^O 

In terms of limiting variances or mean-square errors, the asymptotic relative 

efficiency eg of Me with respect to Xç, when e is small, is 

ee = -26r2E-2(l + 6(e))-l lii[2(AE(l -

The asymptotic relative efficiency ee is computed as the limiting ratio of "equivalent 

sample sizes" n and m; this computation, if it is to be based on variances rather 

than mean-square errors, calls for the above additional assumption of symmetry of 

our TEIFR distribution, under which Pe = Qe = Re-

2.2. Assumptions 

The underlying distribution is assumed to be such that E { X )  =  M e d { X )  =  /x, 

and that both Pr(% — ji > c) and Pr(X — < —c) are log-concave in c for c > 0, 

a property that we call "Two-sided Extended Increasing Failure Rate (TEIFR)" 

("Two-sided" because both sides of zero are being considered and "extended" be­

cause, while the log-concavity does guarantee continuity, it does not guarantee ab­

solute continuity). 
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Define Pc = Pr(X- / i  > c), Qc = Pr(X-/x < —c) and let 7  = sup{c : Pc > 0} 

and 7' = sup{c : Qc > 0}. 

Condition Cl: 

( 1 )  Pc is log-concave for c  on ( 0 ,  7 )  and Qc is log-concave for c on ( 0 ,  7 ' ) .  

(2) e is such that Re = niax( Pg, Qe ) > 0. 

(3a) If e is such that Pe > 0, then Pe > fgg. 

(3b) If e  is such that Qe > 0, then Qg > Q^ç. 

We refer to Condition Cl(l), as specifying that the distribution of — fi 

be TEIFR, because both tails of the distribution of — fj, are being considered 

and, while Condition Cl(l)  guarantees continuity of Pc on (0,  7 )  and Qc on (0,  7 ' ) ,  

respectively, absolute continuity is not guaranteed ( i.e., X^—/j, does not necessarily 

have a density). Condition Cl(2) insures that at least one of two tails tails of the 

distributions of Xj^ — //. protrudes beyond e (respectively, -e) and guarantees a finite 

and non-zero variance cr^. Later on, this Condition Cl(2) is a requirement for being 

able to describe the behavior of Xg in terms of large deviations. 

Finally, the rationale for requiring Condition Cl(3) is as follows: Suppose that 

Pe > 0. Then since the median of (%^ - /x) is zero so that Pg < 1/2, Condition 

Cl(3a) insures that Pg(l — Pg) > Pgg(l - Pg^), a condition required in the large-
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deviation treatment of Me, as explained following equation (2.12). 

Condition Cl is of course meant to be added to the earlier-stated blanket con­

dition that the population mean and median coincide. 

2.3. Asymptotic MSEs of the Rounded Sample Median Me 

For the IFR-type cases to be treated, both Me and Xe will equal n with 

probability tending to 1, so that neither will possess a non-degenerate asymptotic 

distribution. We have therefore little choice but to follow Hammersley [26] in com­

puting the asymptotic relative efficiencies of one to the other, in terms of asymptotic 

variances or mean-square errors, rather than in terms of variances, or of effective 

variances (Bahadur [2]), of their limiting distributions. 

We begin with a tail computation for Me, supposing first that n is an odd 

number :  n = 2v +  1 .  

For any positive c, in particular any positive integer multiple of e, let ^ be 

the indicator of the event — /x > c. Then 

Iv - ' r l  
Pr(M~^>c) = Pr( Yi I'c,i > " + 1) (2.1) 

i=l  

2v  +  l  
= Pr( E Yc, i  >  "  + 1/2) 

! = 1 
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=  P r ( y c > l / 2 ) ,  

where the penultimate equality is due to the fact that ^ is an integer. Perform­

ing now the standard first-order large deviation computation (Bahadur and Rao [4]) 

for Pr(Fc > 1/2), based on the moment generating function ^(<) = 1 —Pc+-Pc exp(i) 

of where Pc — Pr(lg^j = 1) = Pr(Xj — /u. > c), we find that exp( —f/2)^(<) is 

min imized  fo r  t  — ln ( ( l  — P q ) /P c )  =  T ,  and  tha t  exp(— T / 2 )^ ( T )  =  2[Pc{ \  —  Pc)]^/ '^]  

hence 

Pr(M - > c) = Pr(Fc > 1/2) < (2.2) 

for all n, and, in addition, for any 6 > 0, 

Pr(M - /^ > c) = Pr(Fc > 1/2) > (1 - f)"(2"[Pc(l - fc)]^/^) (2.3) 

for n large enough. 

Probabilities of the form Pr(M — < — c) are dealt with in a similar way. 

Define indicators of the events Xj^ — ii < -c, and find analogously to (2.1), 

that 

Pr(M _ /z < _c) = Pr(Zc > 1/2), 

and, with Qc set equal to Pr(Xj - /v, < —c), obtain the analogues of (2.2) and (2.3); 

Pr(M _ < _c) = Pr(:Zc > 1/2) < 2^[Qc(l - (2.4) 

for all n, and, in addition, for any 6 > 0, 

Pr(M _ < _c) = Pr(:Zc > 1/2) > (1 - 6)^(2"[0c(l - Qc)]""/^) (2.5) 

for n large enough. 
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We are now ready to approximate the large-sample MSE of Me when n is odd; 

to that end define: 

7r^^g(Ti), Â; : 1, 2,..., = fe^[Pr( A/-/Li > (2âî — l)e) 

- P r ( M - / i > ( 2 t  +  l ) e ) ]  

and 

Then 

TT^ g(n), A: : 1,2,..., = A;^[Pr(M -/x < -(2fc - l)e) 

— Pr(M — // < —{2k +  l)e)]. 

(2.6) 

{ P r ( M - / i > 6 )  ( 2 . 7 )  

— Pr(jl/f — ^ 3e) (2.8) 
oo 

+ Z (2.9) 
k=2 

+ {Pr(M — ^ < —e) (2.10) 

-  P r ( M  - <  - 3 e )  ( 2 . 1 1 )  
oo 

+ E 4,«(»)}' (2-12) 
k=2 
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As mentioned in Section 2.2, Condition Cl(3a) insures that 

Pe{l  -  P^)  >  -  Pi , )  

which implies via (2.2) and (2.3) that (2.7) dominates (2.8). 

In addition, 

Lemma 2.1 Pr(A/ — /x > e) dominates  Condi t ion  Cl  wher  

Pe  >  0. 

Proof: 

Assuming without loss of generality that 

f e > 0 ,  

Condition Cl(3a) implies that 

> fge- (2.13) 

Also without loss of generality, and to avoid the minor modifications required oth­

erwise, assume that 7 in Condition Cl(l) equals +00, so that 

Pc > 0 (2.14) 

for c > 0. 

The demonstration that Pr(M — /^ > e) dominates '^k e(^) derives from 

the fact that it is only the lower bound (2.3) holds for large enough n, rather 

than the upper bound (2.2), since the lower bound is used only once, in bounding 
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Pr(M — jii > e) from below, whereas the upper bound has to be applied to each of 

the terms of the infinite series e("')-

At any rate, recalling (2.3), (2.13) and the fact that Pg < 1/2 because ji is the 

median of the distribution of choose a 8 such that 

(fe(l - ~S)> (%(1 - (2.15) 

and 

Pr(M - > e) > (1 - 6)"(2'"[fe(l - (2.16) 

for large enough n.  

On the other hand, in view of (2.2), we have for all n that 

oo 

k=2 

^ 9 
< F t {M -  fx > {2k  -  l)e)  (2.17) 

6=2 

oo 

Recall now that Pe < 1/2 so that Pg^ < 1/2 in view of (2.13). Since Pgg <1/2 

there  i s  a  rea l  number  a tha t  i s  la rge  enough to  insure  tha t  \a{p)  = (p( l  — p))^ /p  

is increasing on (0, Pgg], so that, for P^ < P2 in (0, Pgg], 

U P , )  , ( P i ( i - f i ) r „ f 2 ,  

Xa(P2)  '(P2{1-^'2))° -Pi ' 

or 

(Pi(i - Pi) ) ' . Pi  

(P2{1  -  P2)) ' '  '  P2'  '  
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Therefore, examining the ratio of successive terms of (2.17), we find, for k  >  2 ,  

that 

{k  +  l f [P(^2k+l)e( ' ^  -  -P(2fc  +  l )e ) i^^^  

_  . f c  +  1 .2^^ (2^+1)6 (1  -  P{2k+l )e ) ) ' '  n / (2a )  

^ ^ ^ Xf(2A:-l)e(l-^(2A-l)e)r^ 

<  r f c  +  l i 2 r ' ^ ( 2 f c + l ) e p / ( 2 a )  

< r^l2r:%W(2o) 
-  ^ k  ^ ^  Pe^  

- (2.19) 

where the first inequality is due to (2.18) and the second inequality is due to the 

log-concavity of Pc required by Condition Cl(l). Now choose any p < 1 and let 

no be such that (2.16) holds for n > no, and (2.19) is no greater than p. Then the 

RHS of (2.17) is no greater than 

2"+2[.P3,(1 - Pa,)]"/^ 

(1 -p)  

for n  >  no ,  which, recalling (2.15) and (2.16), does indeed verify that, as n  increases, 

Pv{M -  fi  >  e )  

This completes the proof of Lemma 2.1, for n  odd. 
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Next consider the case of even n, say n = 2v, and illustrate the argument with 

the first three terms of (2.6), the second three terms being handled in precisely the 

same way. With ^ defined as in (2.1), the analogue of (2.1) is 

2 2v 
Pr(rc>- + -) = Pr( > » + 1) 

n .  -,  
2 — 1 

< Pr(il/ — fJ,  >  c)  

2v 
< P'( E i'c,i > ") (2-20) 

i = l  

= P r ( 7 c > ^ ) .  

But, according to Lemma 2.2 of Bahadur [2], n'~^lnPr(yc > 1/2 4- Ora(l)) and 

n~^ lnPr(Fc > 1/2) have the same limit, so that individual terms of form Pr(Af — 

jj, > ke) may be handled precisely as when n is odd. In addition, the infinite series 

treated by Lemma 2.1 is covered as well, since, fortunately, the inequality (2.20), 

which furnishes the upper bound to terms of form Pr(M — /x > ke), is precisely the 

expression underlying the argument in Lemma 2.1. 

Theorem 2.2 Suppose a random sample {Xj ; i  = 1,2,...,»} is drawn from 

the TEIFR class distribution whose location parameter is // .  Then the asymptotic 

mean-square error MSEn{M^) of the sample median rounded to the grid (2fce ;  k = 
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0 ,  ± 1 ,  ± 2 , . . . )  sa t i s f ies  

^li^n--'^lnMSEn{Me)=ln[2{Re{l - (2.21) 

where  

Re = niax{ = Pr(^j — ^ e), Qe = Pr(^^ — }• 

Proof: 

A development analogous to the proof of Lemma 2.1, pertaining to the lower 

tail, this time featuring Condition Cl(3b), leads to the conclusion that, if Qe > 0, 

then (2.10) dominates both (2.11) and (2.12). 

Hence, combining the upper tail and lower tail arguments, 

(2e) ^  M S  En{Me)  = Pt[M — fJ-  ^  e)(l + 077,(1)) 

+  P r ( M - ^ < - e ) ( l + O T i ( l ) ) ,  (2.22) 

where one of the two addends of the RHS may equal zero. This last relation leads 

to the result (2.21) of the Theorem 2.2, using (2.2), (2.3), (2.4) and (2.5). This 

completes the proof of Theorem 2.2. 

2.4. Asymptotic MSEs of the Rounded Sample Mean Xe 

We turn to the rounded sample mean A'e, and use the symbol m, rather than 

n, to denote sample size. 
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We begin our discussion of Xg with the case of e small, partly because, when 

e is small, Condition CI, which served us in the case of Ale, is in addition adequate 

to validate our analysis of Xg. We rely on Lemma 2.4 of Bahadur [2], formulated 

for the case of e small, which happens to be couched directly in terms of the large-

deviation behavior of |X—/x| ( Bahadur in effect studies both tails of the distribution 

OÎ X — fi and then combines them, much as we did in going from (2.22) to (2.21)). 

Hence we write the analogue of (2.6) as the sum of three (rather than six) terms: 

(2E)-2M%(%e) = (2e)-2E[(Yc-M^] (2.23) 

= {Pr(|X-/i| > e) (2.24) 

-Pr(|X-/i| > 3e) (2.25) 
oo + Ë (2.26) 

k=2 

where 

== ^^[Pr(iX -/x| > (2fc - l)e) 

- Pr(|X - > {2k  +  l )e)] .  

Lemma 2.3 I f  the  d is t r ibut ion  F  of  X^  — j i  i s  TEIFR,  then  F  possesses  a  moment  

generat ing  func t ion .  

Proof: 
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Since F is TEIFR, there exist constants a, b,  c  and d,  with b,  d  >  0 ,  such that 

ln(l - F(i/)) < a-by  (2.27) 

lnF(a:) < c  — dx ,  (2.28) 

for y  E [0, 7) and x  G [0, 7'). 

Now first consider Jq ex .p{ tx )dF(x) .  That integral certainly is finite for < < 0. 

Furthermore, regarding positive t, write 

JJ  exp{ tx)dF{x)  =  JJ[1  + texp{ ty)dy]dF{x)  

= F(7) - F(0) + t J J [JJ dF{x)]  exp{ ty)dy  

<  1  -  F{0)+t  J^[ l  ~  F{y)]exp( ty )dy  

roo 
< I  - F(0) + i exp(a) exp[(i - b)y]dy  

< 00 

for 0 < i < 6, where the weak inequality is due to (2.27). Thus, all told, 

exp{ tx)dF{x)  <  00 (2.29) 

for t  <  b .  
J  

Next consider Jq exp(—tu)dG(u) ,  where G(u)  =  1 -  F(-u) .  That integral 

certainly is finite for t > 0; regarding negative t, write 

exp{- tu)dG{u)  = j j  ~  Jq t^^I>i- ty )dy]dG{u)  
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= G{^ ' )  -  G{0)  -  t [JJ dG{u)]exp{- ty )dy  

n' 
< 1 - G(0) - t  [1 - G(y)] exp(- ty )dy  

n' 

n' 
< F{0)  -  texp{c)  exp[-{d  +  t )y]dy  

< co 

for t  >  —d,  where the weak inequaUty is due to (2.28). Thus, all told, 

fO 
/ , exp(/a:)cZF(a3) < oo (2.30) 
J-Y  

for t  >  —d.  

Finally, combining (2.29) and (2.30), we find that 

n.  exp{ tx)dF{x)  <  oo 
n 

for —d < t  <  b,  which establishes that F possesses a moment generating function. 

This completes the proof. 

Bahadur's conditions for his Lemma 2.4 are that (a) the distribution of 

possess a moment generating function, and (/?) the variance cr^ of X^ — fj, (finite 

in view of (a:)) exceeds zero. Lemma 2.3 shown above tells us (a) is guaranteed 
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by Condition Cl(l) and (/?) clearly is guaranteed by Condition Cl(2). Hence with 

regard to (2.24), we may avail ourselves of Bahadur's Lemma 2.4 under Condition 

CI (especially his relation (2.11)) when e is sufficiently small, and write 

— me2 
Pr(|X — /x| > e) = exp[-'^^(l + ^^(e))], 

where 

with the function 6(-) satisfying 

lim S( t ] )  = 0. (2.31) 

Lemma 2.4 Pr(|% — /^| > e) dominates  both  Pr(|% — > 3e) and ^(nT,). 

Proof: 

We first compute two lower bounds ((2.32) and (2.33) below) for Pr(|X — //| > 

e); these bounds, and the insuring derivation, are valid, when e is small enough, 

for any distribution satisfying Condition Cl, and are valid as well for arbitrary e 

in the case of the Normal and Laplace distributions. The bounds are computed by 

successively computing t-^^^ > 0, t2 ^ < 0, ae, and ce as in Bahadur [2], the latter 

three being given by 

fle = exp(-c<i g)<^(<i g) = inf exp(-ei)0(i), 
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be = exp(e<2,e)'^(^2,e) = mf exp(e^)0(/) 

and 

Ce = max(ae, b^). 

Substituting now Bahadur's relation (2.9) for his relation (2.13) (or using Theorem 

3.1 in Bahadur [3]), we then obtain 

lim m ^ In Pr(|A''— uj > e) = In Ce, m—»oo r-i _ / c) 

from which we conclude that 

Pr(|X - //| > e) > exp(-me<i g) exp(l + om{l)) (2.32) 

and 

Pr(|X - /i| > c) > exp(me(2,e)<^"^(^2,e)Gxp(l + om(l))- (2.33) 

We are now ready to compare e(^) Pr(|J^ — /^| > e). To this 

end, let be the indicator function (in z) of the event z  >  K.  Pursuing the 

familiar first steps of the large deviation argument (viz., the proof of Theorem 3.1 

in Bahadur [3]), we start with the fact that 

exp(2 - K)t  > I i^{z )  

for any i > 0, and, upon taking expectations with respect to the distribution of 

X — jti, find for any multiple he of e, setting K = he, that 

exp{-mhet ) ( l )^{ t )  > Pr(X -  i i> he)  (2.34) 
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for any i > 0; in addition, using the fact that the moment generating function of 

— {X^ — fj.) is we also find that 

exp(—mhet) ( l>^{—t)  >  Pr(% — // < —he)  (2.35) 

for any t  >  0 .  But 

oo 

k=2 

n _ 
<  t 2 p r ( | % - / , | > ( 2 A - l ) 6 )  

k=2 

^ 9 — 
=  {  ^  k ^ F T { X  - f i >  { 2 k - l ) e )  

k—2 

o _ 
+ E k  Pr(X — ^ < —{2k — l)e)}, 

k=2 

so that, setting t  = g > 0 in (2.34) and t  = —^2 e > 0 in (2.35), 

00 

0 < E 
k—2 

00 o 
< {^  k exp[-(2t - l)em/i g) 

k=2 

00 
+ ^ fc exp[(2A: - l)emi2,e]'?^'^(^2,e)}' 

k=2 

and, appealing now to (2.32) and (2.33), 

(2.36) 

0 < 
P r d ^ - z i l ^ e )  
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oo 
< { ̂  fc exp[—(2fc - 2)emti^ç] 

k — 2  
oo 

+ k exp[(2Â: — 2)em^2^e]} (2.37) 
k=2 

{exp(l + om(l))}-

It remains to show that the first square-bracketed term tends to zero with m. To 

this end set A = min(ei]^ g, —e<2,e)' bound this term by 

oo oo 
2  k  exp[—(2fe — 2)Am] = 2 ^ (A: -f 1) exp[—2A:Am] 

k=2 k=l  

oo 
< 2 ^ 2 " ^  e x p [ — 2 A : A m ]  

A:=l 

oo 
= 4 Y] exp[fc(ln2 — 2Am)]. 

A:=l 

Now restrict attention to m such that In 2 —2Am < 0; for such m, the last expression 

equals 

4 exp(ln 2 — 2A77i) 

[1 — exp(ln 2 - 2Am)] ' 

which clearly tends to zero with m. 

Comparing Pr(|X ~ fJ.\ > 3e) to Pr(|X — /^| > e) is of course less involved, and 

requires just the inequalities (2.32) and (2.33), along with the inequalities (2.34) 

and (2.35) with h = 3. So the proof of Lemma 2.4 is completed. 

Theorem 2.5 Suppose  a  random sample  {X^  ;  i  = 1,2,..., m} i s  drawn f rom 
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the  TEIFR class  d is t r ibut ion  whose  locat ion  parameter  i s  f i .  Then  the  asymptot ic  

mean-square  error ,  MSEm{^e) ,  o f  the  sample  mean rounded to  the  gr id  {2ke  ;  k  =  

0,  ±1 ,  ±2 , .  . . )  sa t i s f ies  

_l - e2 
In  M S  Em{X e)  =+ S{e))  = (2.38) 

under  Condi t ion  Cl  when e  i s  su f f ic ien t ly  smal l .  

Proof: 

Bahadur's [2] Lemma 2.4 allows the assertion, for e sufficiently small, that, 

under Condition Cl, 

1 - e2 
lnPr( |X -  > e) = -^(1 + .5(e))  = (2 39) 

with the function (Ç(-) satisfying (2.31). 

It is shown in Lemma 2.4 above (where, again, the argument involves combining 

tails) that, in addition, Pr(.Y — /Lij > e) dominates both (2.25) and (2.26) under 

Condition Cl when e is sufficiently small, so that, in view of (2.23), relation (2.39) 

in fact allows concluding that 

lim m~^\nMSEm(Xe)  = (2.40) 
m—>oo ^ ' A ^ ^ ' 

under Condition Cl when e is sufficiently small. So the proof of Theorem 2.5 is 

completed. 
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2.5. Asymptotic Relative Efficiency 

Let us compute the asymptotic relative efficiency (ARE) of Me and Xe, 

as the limiting ratio of "equivalent sample sizes." This computation, if it is based 

on variances rather than mean-square errors, calls for the additional assumption of 

symmetry of our TEIFR distribution, under which Pe = Qe = Re- What is required 

here is the number such that 

FarmCx') " ̂ 

for 

m = [cgn]. (2.42) 

It is natural (because of the continuity aspect discussed in the next chapter) to 

replace (2.41) with 

M S EniMe) / In  M S  Em(Xe)  = 1. (2.43) 

Therefore, we assert the following: 

Theorem 2.6 Suppose  a  random sample  {X^  ; 2 = 1, 2 , . . .  , m }  i s  drawn f rom the  

TEIFR class  d is t r ibut ion  whose  locat ion  parameter  i s  /i. Under  Condi t ion  Cl  and 

when e  i s  su f f ic ien t ly  smal l ,  the  asymptot ic  re la t ive  e f f ic iency  i s :  

«€ = = -2,r2e-2(l + «(e))"! ln[2(fle(l - (2.44) 
»y(e) 

Proof; 
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Under (2.42), and in view of relation (2.21) and (2.38), relation (2.43) becomes 

1 = lim 
n-^  \nMSEm(Xe)  

V  ( n  n ^ ^ l n M S E n i M e ) ,  
= lim (—) i _ 

n^oo^m' 'm-^ \nMSEm{Xe)  

This completes the proof of Theorem 2.6. 
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3. FINE GRIDS AND COARSE GRIDS 

3.1. Introduction 

In the previous chapter we found the asymptotic relative efficiency (ARE) ee 

of the rounded sample median Me and the rounded sample mean Xe as the limiting 

ratio of "equivalent sample sizes" under the TEIFR distribution. Now, we find eg to 

be surprisingly sensitive to distribution shape, as well as to the grid mesh size, and 

ee is right-continuous in e at e = 0. In other words, if the population distribution 

possesses a density / in a neighborhood of fj., then 

lim ee = 
e—>0 

the RHS being the usual asymptotic relative efficiency eg of M vs. A" for popula­

tions possessing finite variance and a density in a neighborhood of the population 

median. The asymptotic relative efficiency of Me vs. Xe may therefore be said to 

be "continuous at zero" in the sense that ee does converge to eg. This continuity 

at zero has the further interpretation that the "asymptotic effective variance" of 

M in the sense of Bahadur [2] equals its usual asymptotic variance (4/^(/i)n)"~^, 

for the types of population distributions in question. In this connection Section 

3.2 dominates that "continuity at zero" does not hold for the form of asymptotic 

efficiency dealt with by Hammersley [26]. Furthermore, within the TEIFR class 
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and given continuity of ee at e = 0, the "asymptotic effective variance" in the sense 

of Bahadur [2] of the sample median M equals its asymptotic variance. 

This chapter expands the analysis of to e's of arbitrary size, in the special 

Laplace and Normal cases. We point to a certain equivocal behavior of asymptotic 

relative efficiency away from e = 0 in the case of Laplace distribution. Which of Me 

and Xe is more efficient turns out to depend on the value of e. No such equivocal 

behavior occurs in the Normal case, where the increasing superiority of Xg over Me 

with increasing e is conveniently quantified via a certain quartic lower bound for a 

symmetric version of Mill's ratio H(e) (see Kendall and Stuart [31]); 

• IS 

This last resuly is derived by comparing the rates of decrease of the probabil­

ities of large (beyond e) deviations, respectively of \M — /x| and |X — /x|. Hence 

they pertain as well to the comparison of the asymptotic error rates of certain tests 

based respectively on M and X, since these tests' asymptotic error rates essentially 

are themselves large deviation rates. Thus the findings of this chapter have testing 

counterparts which are discussed briefly in Section 3.4. 
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3.2. Fine Grids 

This section uses the analysis of Chapter 2 to make the following three points: 

1. ee is in a sense continuous to the right at e = 0. 

2. That right-continuity has the interpretation that in the sense of Bahadur [2] 

the "asymptotic effective variance" of M equals its asymptotic variance. 

3. When asymptotic relative efficiency is viewed in the sense of Hammersley [26], 

right-continuity at e = 0 is no longer obtained. 

Regarding the right-continuity of at 0, let us add the assumption that — fx 

possesses a differentiable density / in a neighborhood of 0, and define eg as the usual 

asymptotic relative efficiency of M vs. X, i.e., as Hmiting ratio of equivalent sample 

sizes (David [19]), 

eg = (3.1) 

Recall that ee, as defined by relation (2.44), involves Re, the maximum of and 

Qe- If now and are respectively defined as the analogues of (2.44) with 

Re respectively replaced by Pg and Qe, then L'Hôpital's Rule, plus relation (2.24), 

yields the conclusion that both and tend to eg as e tend to zero. Hence 

lim eg = lim max( ) (3.2) 
e-»0 e^O ^ ^ ^ 

/ r (^) 1- (Q) \ = max( hm eg , hm ^ ) 
e->0 e-^0 ^ 

= eg. 
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a relation that we describe by saying that eg is continuous to the right at e = 0. 

Regarding the "asymptotic effective variance" of M ,  recall first that, since (2.7) 

and (2.10) dominate the other terms of (2.6), relation (2.21) has the equivalent 

interpretation that 

^li^n-hnPr(|M-/x| > e) = ln[2(7Ze(l - ̂ e))^/^]. (3.3) 

We now invoke relations (1.4) and (1.7) of Bahadur [2], which say that, if there is 

a function Vn(fJ.) such that 

2Fri(//)lnPr(|M -/xi > e) ~ 

then Vriifi) is the "asymptotic effective variance" of M. But 

VnW = W \ )nr \  

the usual asymptotic variance of M, does satisfy (3.4), and also is therefore the 

asymptotic effective variance of M. This can be shown as follows: 

In view of relations (3.3) and (2.44), 

/z^oo^2F^(/x)lnPr(|M - /i| > e)' 

-262/2(^) 

ln[2(ii:e(l - Ae))V2] 

4<r2/2(^) 

ee(l +^(e))' 

and, in view of relations (2.31), (3.1) and (3.2), this last quantity tends to unity as 

e tends to zero, so that V^{ji) does satisfy relation (3.4), as claimed. 
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Finally, regarding Hammersley's alternative definition of asymptotic relative 

efficiency, Hammersley [26] computes the ARE of Mg vs. Xç, not in terms of the 

limiting ratio of equivalent sample sizes, but rather as 

vCllS) ^ =*' 
which, when both variances can be approximated in terms of large-deviation rates 

for e > 0, will either be zero or infinity, unless the two large-deviation rates happen 

to coincide. 

On the other hand, in the symmetric TEIFR case, 

Varn{X)  ^  *  

n—KX Varn{M) ® 

equals eg as given by (3.1). 

Typically, then, what will happen is that will be zero or infinite for e in some 

open interval to the right of zero, with eg finite and non-zero, and therefore not 

right-continuous at zero. 

The disparate behavior of and e*  near zero is traceable to the fact that, 

for  the  " regular"  order  la rge-sample  var iance  (4 /^( / i )n)~^  and  cr^ jn  of  M 

and X, the two definitions of ARE (i.e., limiting ratio of equivalent sample sizes, 

and limiting variance ratio) coincide, while, for the "non-regular" exponential-

order large-sample variances of Me and Xe, especially of form and 

exp(—n^Y^(e)), they do not. 
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3.3. Coarse Grids 

For e  not necessarily small, Condition CI still covers what is needed for the 

analysis of Me. However, Condition Cl, while guaranteeing the existence of the 

moment generating function of Xj — /i in some neighborhood of the origin, which is 

the only requirement for our small e analysis of A'é based on Lemma 2.4 of Bahadur 

[2], does not guarantee the existence of the moment generating function far enough 

away from the origin to accommodate an arbitrary e. What is needed for both the 

distribution F{y) of — fx and the distribution G(y) = 1 — F[—y) of ~{X^ — //) 

is the existence of a ^ and <2,E satisfying the requirement stated in italics for 

T ,  b e t w e e n  r e l a t i o n  ( 2 . 3 )  a n d  r e l a t i o n  ( 2 . 4 )  o f  B a h a d u r  a n d  R a o  [ 4 ] ,  w i t h  t h e i r  a  

corresponding to our e. Such ^ and —^2,e exist for e of any size, for both 

the standard Normal and standard Laplace distributions, and allow computing the 

large deviation rate 

6^)(6) = 6^/2 (3.6) 

for the standard Normal (which, when (3.6) is set equal to (2.39), gives = 0 

trivially satisfying (2.31)), and, after some computation, the large deviation rate 

\ e) = ln2 — 1 — 21ne + ln['y(1 + e) — 1] + ^(1 + e) (3.7) 

for the standard Laplace (which, when (3.7) is set equal to (2.39) gives = 

(4/e^)(^i^^(e) — e^/4) also satisfying (2.31)). Also, as pointed out at the beginning 

of Lemma 2.4, the argument in that lemma applies to the present case. Hence (3.6) 

and (3.7) describe the behavior of Varm{Xç) in the sense of (2.40). 

In addition, both the standard Laplace distribution and the standard Normal 

distribution satisfy Condition Cl for e of any size, so that as given by the 
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middle term of (2.21), i.e., 

»5jf)(t) = -ln2v'$(e){l-<f(e)} (3.8) 

for the standard Normal, and 

^]V/\e) = -^ln[exp(-e){2-exp(-e)}] (3.9) 

for the standard Laplace, describe the behavior of Varn{Me) in the sense of (2.21). 

Finiilly, the first equality of relation (2.44), with (3.6) and (3.8) substituted in 

the case of the Normal, and (3.7) and (3.9) in the case of the Laplace, then gives 

the asymptotic relative efficiency of vs. for arbitrary e, in the sense of (2.42) 

and (2.43). 

We now use (3.7) and (3.9) to show that, in the case of the standard Laplace 

distribution (for which cr^ = 2 and f{li) = 1/2), the quantity is not of the 

same sign for all e on the entire half-line (0, +oo). Thus, is asymptotically more 

efficient than Xe for some mesh size, and less efficient for others. Indeed, we learn 

from (3.1) and (3.2) that is near 2 for e's near zero. On the other hand, as will 

be demonstrated in the next paragraph, < 1 for large e, all of which says that 

A/g is asymptotically more efficient than Xç when e is small, but asymptotically 

less efficient than Xe when e is large. 

The assertion that eg < 1 for large e follows by noting that ^^(e) — ^j\//(e) = 

— Cç) is positive for e large. This last assertion is followed in turn because, 

using (3.7) and (3.9), one finds that the derivative 

\/(l + e^) — 1 ^ exp(—e) — 1 

e 2 — exp(-e) 

of 6i^\e) — ^^\f) tends to the positive number ^ with increasing e. 
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The Normal distribution, with Xe maximum-likelihood, does not exhibit this 

( N )  ( N )  
equivocal behavior; indeed, the difference 6^ '(e) — (e), as computed using 

(3.6) and (3.8), is bounded below, for all e > 0, by the increasing quartic 

1̂ 1.2 + (3.10) 

which may be seen as follows: 

Let $ and </> be, respectively, the cumulative and density of the standard Normal 

distribution, and assume cr^ = 1. With = —ln2y'$(e){l — $(e)}, one has, 

for all positive e, that 

> e + 
• 7 ( f c ) ( i ' ^ ) l ' i ~  2 ( 2  +  ̂ ) 1  

2(|)  

which is positive. 

Since, in addition, ^^^(0) = = 0, it follows that 

W > ['̂ i.2 + i." (3.11) 

for all positive e, where the RHS is the bound given by (3.10). This bound turns 

out to be equivalent to a certain quartic bound on the symmetric version 

""•«-'•IS 
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of Mill's ratio, which can be demonstrated by noting that relation (3.11) holds if 

and only if 

which in turn holds if and only if 

R{€)R{-e)  > ^exp[(^ '^)e2 + 

which is the quartic Mill's ratio bound referred in the above. 

3.4. Testing Hypotheses 

We close this chapter with a restatement, in the context of tests, of the discus­

sion concerning the standard Laplace distribution in Section 3.3. 

Let fi be the unknown center of a standard Laplace distribution, and consider 

testing Ho : fj, = vs. Hi : = (ii = /^o + 2e using one or the other of the 

following two tests: 

A test Ti rejecting Hq if M > , with c-^ chosen so as to minimize the sum of 

the errors of both kinds; and a test rejecting Hq if X > with chosen so as 

to minimize the sum of the errors of both kinds. 
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Then, since both AI and X will be symmetrically distributed about /x, both 

and C2 will equal {fii + ̂ ,o)/2 = /xq + e, and the error probabilities for and T2 

will respectively be given by 

Pr(M — /xo > e) 

and 

Pr(X - /io > e), 

and these two error probabilities will decay exponentially to first order, with re­

spective rates and The remarks of this section therefore imply that 

Ti will be the better test when e is small, but the poorer test when e is large. 
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4. GRANULARITY AND EFFICIENCY IN THE P-VARIATE 

REGRESSION MODEL 

4.1. Introduction 

Hammersley [26] considered the sample variance of the rounded sample mean 

Xg as an estimate of a Normal population mean /x rounded to a uniform grid 

of mesh size 2e. Chapter 2 and Chapter 3 extended Hammersley's work to a 

certain class of "two-sided extended IFR (TEIFR)" distributions, via the the­

ory of large deviations (Bahadur and Rao [4]; Bahadur [2,3]). These chapters 

dealt with a sequence of i id  random variables ; i  = 1,2, ...,n} and veri-
2 

Red that limn,—»oo In yar%[%e] = —+ "^(c)], where = Var{X) and 

6{-) is such that Hmg_^Q^(e) = 0. It was asserted in Lemma 2.4 of Chapter 2 that 

Pr(|X — /x| > e), which is the first term in the infinite series for [2e)'~'^Varn\Xe], 

dominates the rest of this series. 

This chapter will consider the asymptotic variances and covariances of rounded 

least-squares estimators (RLSEs) ^. in Normal p-variate regression models, in 

terms of  the  large deviat ions of  Pr( |6 j  — >  ej)  and Pr(6^ — >  e^,  hj  — 

(^j > y ), respectively, where is the least-squares estimator of the grid-valued 

parameter for i = 1,2,... ,p, rounded to the grid. The asymptotic variances and 

covariances of these rounded regression estimates are analyzable in terms of their 
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large deviations in a manner analogous to the analysis of the rounded sample mean 

Xe. 

Assume that the disturbance vector is distributed 7V(0, cr^/) and there is a 

positive definite matrix Q such that limn^oo = Q. To implement the 

regression analysis, Section 4.3 contains some lemmas that extend to the ft^'s the 

treatment of large deviations of sample means in Bahadur and Rao [4] and Bahadur 

[2,3]. These lemmas yield large-deviation rates for regression parameter vectors b: 

n-1 lnPr(6 - ̂  > e) = n-l(-^6'Fe) + On{l). 

The asymptotic variances and covariances of the RLSEs are formulated in sec­

tion 4.4: 

The asymptotic variance Varn{bj^^ .) of the RLSE ^ ., obtained by rounding 

to the grid (2kej ; fc = 0, ±1, ±2,...), satisfies 

.2 

lim n ^ InVarnib^ f: . )  = lim » 
n-^oo ^  RA—>OO 2na^ 

e-
3  

n,J 

where Q j  j  is the {j , j )  element of Q. 

(4.1) 

The asymptotic covariance Covnih:  ^ . )  o f  t h e  R L S E s  b- .  and 6; ^ , 

rounded the grids (2A:e^, 2kej  ; = 0, ±1, ±2,...) satisfy 

lim n~^\nsgn(corr '  ACovnib:  p. ,b:  p . )  = lim - J-
n—>oo ^ ^  ^1^1 J i^ j '  n-^oo 2n 

2ct2 
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where corr^ j is the correlation between 6^ and bj ,  and 

1 if a; > 0, 

sgn{x)  = < 0 if a; = 0, 

— 1 if a; < 0. 

The analysis is illustrated with the simple regression model. 

The joint asymptotic efficiency (JAE) may be defined as the determinant of 

the asymptotic variance-covariance matrix, leading to the JAE of RLSEs in the 

form 

n 
lim n~^ln|F®| lim ^ M ^ lnVarn{bi p.) n—>oo n—>oo 

i=l  

f 'h i , i  
h 2-2 • 

which is the summation of expression (4.1). 

4.2. Assumptions and Notation 

The model is an i id  multiple regression model. The vector of sample observa­

tions Y_ is expressed as a linear combination of p explanatory vectors X_j plus an 

i id  disturbance vector  u:  

y. — ^l/^i + ̂ 2^2 + • • • + (4.2) 

where each vector possesses n  elements, and the n x p  matrix X_ = (%%, %2) •  •  •  '  =^p) 
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is assumed eventually to be of rank p.  

Condition C2: 

(1) The n mutually independent elements of u are distributed N(0, cr^). 

(2) There exists a positive definite matrix Q 

such that  l im^-^oo = Q-

The Condition C2(2) implies that the p averages ^n, j  ~ and 

sample variances 5^^. = ~ are assumed, respectively, to con­

verge to constants fixj and <^xji ( —oo < fixj < oo, 0 < < oo) as sample 

size n increases. 

Let b = {b-^,b2- ,  •  • .  ibp) '  be the vector of least-squares estimators, which are 

non-iii random variables. For i and j such that i j, and and ej constants, 

define 

^n,ej = — ffj > ^j) (4.3) 

and 

Pn,ej^ ,e j  = max(f]^g^ , Pn,ej^ ,e j ) i  (^-4) 

where 

Pn,ei ,e j  = bj  -  /3j  > ej)  
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and 

Pn,e^,ej  = -  /3^ > e^,  b j  -  I3j  < -Cj) .  

Each bj  — I3 j ,  which is a linear function of i id  random variables ui,u2, • • • ,Un, 

has a moment generating function with the Condition C2(l). Also b^ — and 

bj — (3j have a joint moment generating function. Hence we can define, for real 

and t j ,  

and 

where 

= exp(-ej t j  )E[exp(bj  -  (3j) t j]  

= exTp{-ej t j  + N) 

= exp(-e^i j  -  ejt j )E[exp{{bi  -  + {bj  -  (3j t j ) )]  

= exp{-et + ^t'Vt), (4.6) 

and 

—  ( 0 , . . .  , 0 ,  6 ^ , 0 , , . .  , 0 ,  €j ,  0 J . . .  5  0 )  ,  

t  =  ( 0 , . . . , 0 ,  0 , . . . ,  0 ,  0 , . . . ,  0 ) '  

V = Var{b)  = a-^iX'Kr^.  
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In addition, there exist y and (r^ respectively, such that 

= infV' n (<j )  =  pn{^ j )  (4.7) 
J  

and 

= M = /)7i(ez,ej). (4.8) 

4.3. Modified Lemmas 

Bahadur and Rao [4] and Bahadur [2,3] considered Pr(|X — /i| > e) under the 

situation for which Xi,X2, • • • ,Xn are iid random, variables and the sample mean 

X is an estimator of the population mean fi. 

However, for every i  and j  such that i  ^ j, both Pn,ej and Pn,e^,ej under the 

model (4.2) involve the vector b — /3 = Vl that is a linear function of 

the i id  components of the vector u. Therefore, the large-deviation treatment of X 

needs to be modified to apply to b. 

The large-deviation treatment of |.Y — /i| in Chapter 2 relied on Lemma 2.4 of 

Bahadur [2], but Lemmas of Bahadur and Rao [4] and Bahadur [3] can be extended 

to  cover  the  la rge-dev ia t ion  behav ior  o f  \b j  

Let = bj  -  (3j  — Éj  and let Fn{- )  and respectively, be the distri­

bution function of and Y^j). Define Gn(-) and Gni','), respectively, 
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as the distribution functions of random variables and Z^ j) obtained 

from Fn{-)  and Fn{-i  •) by "exponential centering", as explained on page 13; i.e., 

dGn{zj)  = exp(T^ 

and 

d G n { z i , Z j )  =  p n i e i , e j ) ~ ' ^  e x p { T ^ ^ i Z i  +  r ^ j Z j ) d F n i z i , Z j ) ,  

where pn and Tns are defined in expressions (4.7) and (4.8). Note that the dis­

tributions Fn and Gn are, as a matter of fact. Normal distributions; however, the 

notation of Bahadur and Rao [4] is followed here. 

Lemma 4.1 The moment  generat ing funct ions of  Z^  j  and {Z^ Z^ j )  exis t  in  

neighborhoods of  the origin,  and we have 

Proof: 

The univariate case is covered in Bahadur and Rao [2]; to prove the existence 

of the moment generating function in the bivariate case, proceed as follows; 

L e t  d e n o t e  t h e  m . g . f .  o f  Z ^ j )  f o r  t h e  r e a l  n u m b e r s  t { , t j .  

Then 

ini t iât  j )  = Vn(r„, i  +  ̂ j ) /Pn{H,^j)-



56 

Since < oo in a neighborhood of follows that 

< oo in a neighborhood of — (0,0). This completes the proof of 

Lemma 4.1. 

Let 

U j { n )  =  Z n j / a - n j ,  

and note that 

Then define 

H ^ j { x )  = Pr((7j(n) < x ) ,  —oo <  x  <  o o .  

Lemma 4.2 Expression (4-3)  equals  pn{ej) lnj i  where 

roc 

The proof is similar to that in Bahadur and Rao [4]. 

Now, for an arbitrary positive 6 ,  we can derive, by integration by parts, 

-  ̂n,i(0)] < ^n, j  < 1- (4.9) 
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The conditions on the fixed explanatory variables described in Section 4.2 imply 

that cr^ j converges to zero as sample size increases, so that we obtain 

= on(l) 

and 

n~^ In Pn,ej = \npn{ej) + on{l). (4.10) 

Now consider the bivariate case. Let 

~ Zn^n/[Zny-T-n]^^= Tn^nl^ni  

where r„ = ^"d Z_n = )'> and define 

< z), -oo < $ < oo. 

Lemma 4.3 Pn,e^,ej  expression (4-4)  equals  

where 

Proof: 
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Pn,ei,ej = Pr(6^ - > ^j) equals 

> 0 )  

= G;)/ >0} 2_,.) 

= P n { € i , e j )  A exp{-CTnx)dK^^i j{x)  

= Pn{ei ,e j )an exp(-(7*a:)[if^^j j(a:) - Kn^ij{0)]dx,  

where the last equality is followed by integration by parts and cr^ was defined in 

Section 4.3. The proof is completed. Note that, actually, it provides as well the 

argument for Lemma 4.2. 

.With an argument analogous to that for inequality (4.9) relating to j, the 

f o l l o w i n g  c a n  b e  o b t a i n e d ,  f o r  6 ,  

- Kn^ij{0)]expi-(T*ê) < < 1, 

so that one finds 

^ ^ Pn,e^ ,e j  =  ̂  ^ lnp7x(e^, e^) + On(l)-

Now, by performing the standard first order large-deviation computation (Ba­

hadur and Rao [4]) extended to bivariate case, we have 
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for all n; in addition, for any > 0, 

— ^n)  

for n  large enough. 

Therefore, we can say 

n  ^  \ n  P n , e ^ , € j  =  T T '  ^ ln/}n(e^, e^) + On(l). (4.11) 

We may consider the p-variate large deviation in the model 4.1, i.e., 

Pr(6 - §_>e), 

where 

Ê = (/^ l ' /^2 '  •  •  •  

and 

i = (^1 ' ̂ 2' • • • '  ̂ p) ' •  

Tpni t )  was set up in (4.6) with t  = •  •  •  , tp) '  and then 

T = V_~^e, so that 

i l^niz)  = exp(-^/F"^e). 

Then we may conclude that 

n-1 lnPr(6 - ̂  > e) = n-l(-i/VLg) + on{l). 

0 gives 

(4.12) 

(4.13) 
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4.4. Asymptotic Variances and Covariances of RLSEs 

Hammersley [26] and this dissertation, respectively, considered the rounded 

sample mean Xe as an estimate of the population mean, /x, in the Normal case and 

within a certain "TEIFR" class in the Chapter 2, restricted to an uniform grid of 

mesh size 2e. Now we may consider rounded least-squares estimators (RLSEs) 6 • g , 
J 

of /3j in the regression model (4.2) rounded to a uniform grid of mesh size 2ej for 

every j .  

As we formulated the asymptotic variances of the rounded sample mean A'^e 

in terms of the large-deviation behavior of jAT — in Chapter 2, the asymptotic 

var iances  of  RLSEs can be developed through the large-deviat ion behavior  of  \hj  — 

For every j  and positive e^, 

~  B j f ]  (4.14) 

= {Px{\bj  -  (3j \> €•)  (4.15) 

-Pr(|6j - (3j \ > 3ej) (4.16) 

oo 
+ Y. nfc(n,ej)}, (4.17) 

k=2 

(4.18) 

where 

= fc^Pr{(2A: -  l)ej  < \bj  -  /3j \  < {2k + l)e^} .  

It was shown in Lemma 2.4 of the Chapter 2 that Pr(|X — /i| > e) dominates 

the infinite series of (2e)~^Vai-(A''e). Also, it is not hard to prove that the (4.15) 
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term dominates both (4.16) and (4.17) with Condition C2, and this will be clear 

after examining the analysis of the asymptotic covariances of RLSEs 6^ g, and ^ . 

shown below. 

Theorem 4.4 Under the Condi t ion C2 about  the model  (4-2)  described in  the sec­

t ion 4-2,  the asymptot ic  variance Ft  

(2k€j  ; k  = 0,±l ,  ±2, . . . )  sat is f ies  

t ion 4-2,  the asymptot ic  variance Varn{bj  ^•)  of  the RLSE bj  rounded the grid 

-1 ^7 

n,3 

2(72 ' 

where QjJ  is  the { j , j )  element  of  Q.  

Proof: 

Under Lemma 4.2 and equation (4.10), it is true that 

^lim^n^MiiPr(16j- -/îjl > e j )  = In^ej), 

SO that we can write 

lim In  Varnibi  p . )  = lim n~^ In pn(e^) .  
n-^oo ^ • ' '  J  n—^oo ^ J '  

Now from expression (4.7), 

(4.19) 
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implies 

so that pn(^j) in fact equals 

exp(-E^/2(r^j). 

Thus we have ^ 

lim n~^ \nVarn{b~ p .) = lim 4—, 
m^oo ^ m-,oo 2710-2 . 

^tJ  
whose limits would be expressed in (4.19). 

We now turn to the asymptotic covariance of the RLSEs g, and bj ̂  for 

every i and j {i ^ j), and positive e^- and ej. In this situation, it is helpful to 

consider the four quadrants of the plane, and we write the analogue of (4.14) as the 

sum of twenty terras: 

{2ei)- \2ejr^Covn{bi^ , . ,b j^ ,p  

=  - 0 j ) ]  

= {Pr(6^ - H^bj - fij > ej) (4.20) 

-Pr(6^ —f3i> Hibj - I3j > Sej) (4.21) 

-Pr(6^ -/3j > 3e^,bj - (3j > ej) (4.22) 

+ Pr(6^ —/3j > 3e^,6j -/3j > 3e^-) (4.23) 

oo oo 

+ E E "flm (4-24) 
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-{Pr(6^ < -Ej) (4.25) 

- Pr(6^ - > e,., < -3ej) (4.26) 

- Pr(6^ - > 36^,6^. - < -e^) (4.27) 

+ Pr(6^ - > 3E^, 6^. - < -3ej) (4.28) 

oo oo 
+ EE (4-29) 

-{Pr(6j - f i i <  -ej,6j -/3j > e - )  

-  Pr(6* - ^ i <  - /?j > 3ej) 

-  Pr(6^ -  f^i  ^  ~3e^,bj  -  f3j  > ej)  

+ Pr(6^ — < —3e^,bj  — (3j  > 3ej)  

oo oo 

+ E E 
l—lm—l(i=rn7^1) 

+{PKh - A ^ ~ ^ ~~^j)  

-Pr(6^ -  0i < -  (3j  < -3ej)  

-Pr(6j -/?i < -3e^,6j -  f3j  <  -e j )  

+ Pr(èj  — —3e^,bj  — /3j  < -3ej)  

oo oo 

+ Ê Ê ^/,m 
/ = 1171= 1 ( /=77x̂  1 ) 

where 

= /mPr{(2/- l)e^ < 6j -/3^ < (2/+ l)e^, 

(2m -  l )e j  <  bj  -  fSj  <  {2m +  l )y  } ,  
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= ZmPr{(2Z - l)e^ < -/3j < (2/+ l)e^, 

— (2771 + l )cj <C bj  — 0 j  < —(2771 — 1 )}, 

^ ( , 7 ^ =  Z T 7 i P r { - ( 2 /  +  1 ) E ^ '  <  6 ^  <  - ( 2 /  -  l ) e ^ ,  

( 2 7 7 1  —  l ) e j  <  b j  -  j 3 j  <  ( 2 7 7 1  +  l ) e j } ,  

n;^7^ («, ei,ej) = /77iPr{-(2/+ l)ej < 6^--/3j < —(2/- l)ej, 

— (2771 4- ^ 6J — /5j < —(2771 — 1 ). 

Lemma 4.5 Veri f icat ion that  the term (4-20)  dominates  the terms (4-21)  to  (4-24)  

under the Condit ion C2.  

Proof: 

Set — b^ = a = à, 0j  = bj  = b =  ̂ ,  = eg — ^1- Define, as in 

equation (4.6), 

(l>n{ta,tb) = -E[exp{(a - a ) t a  +  ( b  -  /3)<^}]. 

Then we can find Tn,a > 0 and ^ > 0 such that 

^n{^n,a, "^71,6) ~ inf exp(-eQia - eitfj)(j)n{ta, t},)-
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Using the expression (4.11), we then obtain 

- a > eg, 6 -/? > e^) = lim n~'^ lntpn{rn,a,r^h), 
f t  '  IL '  CvU "  

from which we conclude that a lower bound for the term (4.20) is given; 

Pr(a-Q > EQ, b- /3  >  e^) > exp(-eorn,a- eiT^,6)<^n(T-n,a,t^^^)exp(l -0^(1)). 

(4.30) 

Now an upper bound for the term (4.24) will be given, for every ta > 0 and 

^6 > 0: 

n^"^^(n,eo,ei) < /m Pr(a - a > (2/- l)eo, 6 - /? > (2m - l)q) 

< lmexp [~{2l  - l)€Qta - {2m - l)eitjj](l)n{ta,t{,), (4.31) 

so that, setting ta = Tn^a and 

OO GO 

0 < E E 
/—ITTÏ —1(/=: 77x^^1) 

OO OO 

< E Z! ^"^exp[-(2/-l)eorn,a-(2m-l)eir„^j,]0n(rn,a,T„,i)-
I—1771=1(^1— 

Hence, appealing to (4.30), 

~  i = i m = i ( / = „ ^ i ) P ' ( ' ' - ° s = o .  i ' - / ' > q )  

oo OO 

< (IZ H /mexp[-(2/- l)eorn,a - (2m - l)eir^^^]}exp(l - On(l)). 
^=1''^—l(/=m^l) 

It remains to show that the first bracketed term tends to zero with n .  This term 

can be written as 

OO OO 
s Z) (Z + l)(m + l)exp( -2ko rn ,a-2meiT^^^) 
/=0m=0(/=77j,^0) 
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oo oo 
< E Z exp[/(l-2eoTn,a)+ m(l-2eir^^j)] 

;=0m=0(/=Tn7^0) 

[1 - exp(l - 2eorn,a)][l - exp(l - 2eiT^ (,)] 

which tends to zero as sample size n increases to infinity since, when sample size 

increases, both Tn^a and j tend to infinity. 

Comparing the terms (4.21), (4.22) and (4.23), to the term (4.24) is of course 

less involved, and requires just the inequality (4.30) along with the inequality (4.31) 

with 1 = 1 and/or m = 1. Thus the proof of the Lemma is completed. 

In a similar way, it can be shown that the term (4.25) dominates the four other 

terms (4.26) to (4.29). Furthermore, using symmetry, we may write 

= 2{Pr(6f  -  hj  -  (3j  > ej)  -  Pr(6^ -  > e^,  b j  -  < ~€j)}  

(1  +  on ( l ) ) .  

Theorem 4.6 Under the Condi t ion C2 about  the model  (4-^)  described in  the sec­

t i o n  4 - 2 ,  t h e  a s y m p t o t i c  c o v a r i a n c e  C o v n i b j  . , ,  6 .  ̂  .  )  o f  t h e  R L S E s  b -  ^ .  a n d  6 ;  ,  . ,  
J i  J  ' Î •'' J 

rounded the grids  (2A;e^,  2fcej  ;  k  =  0 ,  ± 1 ,  ± 2 , . . . )  sat is f ies  

lim In  sgn(corr-  •)Covn(b~ p . jb^  p . )  = lim — • ^ e V ~ ^ e  
n—>oo ^ ^ ^ n->oo 2n 
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(4.32) 

where corr^  j  i s  the correlat ion between b^ and bj  and 

s g n { x )  —  

1 i f  X > 0,  

0 i f  X = Q, 

— 1 i f  X < 0.  

Proof: 

If the correlation between b ^  and b j  is positive, then Pr(6^ —> ej, b j  — f 3 j  >  

ej) dominates Pr(6^ - (3^ > e^, bj — (3j < —ej), and one finds 

sgn{corri j ){2^)~' '^{2ej)~ '^Covn{bi ^ ç . , b j ^ ^ ^ )  =  P n , e i , e j { ^  +  O n { l ) ) -

Equation (4.11) allows the assertion that 

Jim^n-hnPn,ei ,e j  = 

Then we can write 

lim n~^ Insgnicorr^  ACovnibj  f . ,b-  f . )  = lim n ~ ^  I n p j i ( e j , e ^ ) .  
n—^oo ^ ^ iJ '  ^  Ji^j  n-^oo ^  ^ J '  

Now in order to obtain ipni^jTj) defined in (4.8), setting '^''Pn{ti,tj) equal to 0 

gives 

= (0; ' - ' ; 0; 0, . . . , 0, j , 0, - - - , 0) = il Éî 
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so that we have 

Pn(ei,e_^-) = exp(-^eV ^e), 

with e = (0,..., 0, ej, 0,..., 0, ej, 0,..., 0). 

Therefore, all told, we have 

Hm n~^ \nsgn(corr:  ^)Covn(b^ c  . ,b:  p . )  — lim - -^eV^e 
n^oo ^ ^ ^ n—>oo 2n 

' ê'Os-2^2 

This completes the proof of Theorem 4.6. 

To illustrate the above, consider a simple regression model whose conditions 

are described in the Condition C2; 

^ - <^1 + + S! i  = 1,2,..., n. 

With the variance and covariance matrix 

V = a^ n E ( - Y j - X ) 2  s r ( Y . - Y \ 2  

-X 1 
and grid sizes 2e]^ and 2^2, 

E(.Yi-.V)^ / 

equation (4.19) for the variance of 6^ tell us that 

^ I r ' W h . q )  =  
v \ 2  

n 
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2cr2(o-§ +/zi) 

In a similar way, concerning ^2,62' obtain 

- 1 ,  4 n X i - X f  
^ 

,2  c2 
= lim 

n—>oo 2cr^ 

-  2 f 2 '  

Moreover, equation (4.32) for the covariance of 6^ and ^2,62 this model 

becomes 

^l^«-lln-C<n,„(6i_ji,62,^2) = „!iSo-^(^l+2-?nE2 + ™=2) 

^^[^1 + 2^33^162 + + A<'x)^2l 

4.5. Joint Asymptotic Efficiency 

In order to consider the joint asymptotic efficiency (JAE), we may take the 

determinant of the asymptotic variance and covariance matrix, say |y^|. From the 
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illustration with the simple regression model above, the determinant of the asymp­

totic variance and covariance matrix of the RLSEs 6i and bn is as follows: 

2 2 
Gxp{-—-^( 2 ^—^  +  e 2 )  +  O n { ' n ) } - e x p {  g + 2fix£l^2 '^ i^x  + 

o-J + i i i  (T^ 

Since 
2 2 

~^( 2 ^—2 ^2) < + 2^2^122 + i^x  + lÂ)^2^ 
CTj; + ^3; 

the product of the asymptotic variances dominates the square of the asymptotic 

covariance, so that we may say that, as sample size increases, the asymptotic co-

variances will be negligible. Therefore, the JAE of this illustration is 

Now we can go back to the p-variate regression model to conclude that the JAE of 

the RLSEs is as follows: 

1 ^ 1 
lim n ln|F®! = hm n  \ n V a r n ( b - . )  

n-^00 n-^00 ^  
i—\ 

•f 
^ ~h 2-2 • 

which is the summation of expression (4.19). 
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5. MULTIVARIATE GRANULARITY AND EFFICIENCY 

5.1. Introduction and Assumptions 

For a possible illustration involving an ordinary grid-valued location parameter, 

there comes to mind the grid of nameless Iowa dirt county roads whose purpose it is 

to frame the mile-square "section," and which therefore criss-cross the countryside 

a mile apart. They are made hazardous at their intersections in late summer by 

the tall corn that blocks the lines of sight. Since the roads are nameless and the 

distinguishing landmarks few, initial intersection accident reports to the sheriff, to 

the extent that they would be vectored in terms of hastily approximated distances 

from hastily chosen reference points not necessarily adjacent to the scene of the ac­

cident, could perhaps be thought of as furnishing a random sample from a bivariate 

density of location centered at the intersection accident site. Thus it may be of 

interest to consider the bivariate, and also the multivariate, cases. 

Chapter 2 considered the rounded sample mean and the rounded sample me­

dian via Bahadur's treatment of the behavior of the probability of large deviations, 

i.e., Pr(X — li > e) and Pr(A/ — /x > e). In addition, the rounded least-square esti­

mators bj ç . for the p-variate regression model were considered in Chapter 4, where 

Pr(6^- — > ej) and Pr(6^ —> e^, bj —/5j > ej) were examined in order to for­

mulate the asymptotic variances and covariances of the rounded least-squares esti-
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mators. Now, the present chapter will consider not-necessarily-Normal multivariate 

rounded sample means and rounded sample medians, treated by bivariate large de­

viations similar to those introduced for the regression analysis. For j = 1,2,... ,p, 

let {Xj^j} be a random sample from a certain p-variate distribution F, satisfying the 

condition that fij = Mj, plus Condition CI described in Section 2.2. Also assume 

Var{X^j) = cr|, and X j and X { j ^ j' ) are not necessarily independent. Each 

Xj and Mj are rounded to the nearest point of the uniform grid 2ej, yielding Xj ^ . 

and Mj ^ ., respectively. Then the asymptotic variances and asymptotic covariances 

ofXe = ( %2,E2' •••' )andMe = ^^2,62' •••' 

considered. In order to examine the asymptotic covariances, the bivariate distribu­

tions are assumed to be such that both Pr(%2 — fJ'l > %2 /"2 — ^2) = 

and Pr(%2 — > ej, %2 — ^2) = Q^li^2 appropriately quadrant-

symmetric, and bivariate log-concave in positive (e^, E2), a property that we can 

call the "Two-sided Extended Bivariate Increasing Failure Rate (TEBIFR)". Thus 

the p-variate analysis needs to extend Condition CI described in Section 2.2. Let 

us define 7e^ = sup{ei : Pei,e2 > 0}, Teg = sup{e2 : Pei,£2 > 0}, 7^2 = 

sup{€]^ : Qe]^,e2 > 0}, and = sup{e2 : Qei,e2 > 0}- Then Condition C3 is 

as follows: 

Condition C3: 

(0) Pr(Xi -/il > ei, ^2 -//2 > «2) = -//I < ei, X2 - f^2 ^ ^2) 

= ,^2 
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Pr(Xi -/il > 6]^,  X2 -/i2 < ^2) = ~ ^1 ^ ̂ 1' ^ 2 - 1 ^ 2 ^  ̂ 2 )  

— ^^1)^2" 

(1) ,62 is log-concave for {(61,62) : ej G [0, 7ei), ^2 G [0, -ycg)}, and 

061,62 is log-concave for {(61,62) : 61 G [0, 7^^), eg G [0, ^gg)}. 

(2) (ei, 62) is such that i?6i,e2 = niax( ^61,62, 061,62 ) > 0. 

(3a) If (61, 62) is such that f^i ,62 > 0, 

then Pe.^,.2 > ^61,362' ^861,62' ^861,363 )' 

(3b) If (ei, 62) is such that <?6i,62 > 0, 

then >max( Qei,362' ̂ 361,62' Q3ei,3€2 )' 

We refer to Condition C3(l), as specifying that the distribution of (%i — 

/il, %2 ~ (^2) the TEBIFR. Condition C3(2) implies Condition Cl(2), which 

guarantees a finite and non-zero variance. Later on, this Condition C3(2) is a 

requirement for being able to describe the behavior of (%^g^, ^jej) i'^ terms of 

bivariate large deviation. Finally, the rationale for requiring Condition C3(3) is 

as follows; Suppose that •Pei,62 > 0. Then since the medians of (%i — /^i) 

and (%2 ~ /^2) zero in view of the above condition that fij = Mj, so that 

^61,62 ^ 1/2, Condition C3(3a) insures that vPgi ,62(1 ~ ^61,63) is greater than 

max{ -P3ei,e2(^ ~ -^361,62)' ^61,362" ̂ 61,862)' ^36i,362"" ̂ 861,862) }' 

This chapter extends the univariate analyses of Chapters 2 and 3, based on 

Bahadur and Rao's treatment of univariate large deviations, to the multivariate 
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case for sample means and to the bivariate case for sample medians: 

n~^ lnPr(% - ̂  > e) = In/)^(e) + 0^(1), 

where p^{e) is defined as min^[exp(— 

ri~MnPr(Mi - m > e^, Afg - /^2 ^ ^2) = + On(l), 

where i® defined as [exp(-^ - y^g(<l,(2)]' 

The asymptotic variances of the rounded sample mean and the rounded sample 

median have been already considered in Chapter 2. The preceding relations make 

possible the computations of the asymptotic covariances of such estimators: 

^^sgn{corrij)Covn{Xi^^^, . J = ln/?^(e^-, e^-) 

and 

n^}^oo^~^ ^^^9n{corrij)Covn{Mi^^.,  = lnp^{ei,ej),  

where corr^ j  is the correlation between and hj , and 

sgn{x) 

1 if a) > 0, 

0 if z = 0, 

-1 if z < 0. 

We thus obtain the matrices of the asymptotic variance and covariance of the 

rounded sample means and the rounded sample medians, leading to the possibility 

of a comparison of X_e &nd Me, in terms of the joint asymptotic efficiencies (JAEs), 

which were defined in Chapter 4. It is found that the JAEs of X_^ and Mg are the 

summations of univariate large-deviation rates: 

P 
lir^n-Mn|F»(l)l= E 

J=1 
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and 

i=i 

These computations are illustrated using the Normal and Laplace distributions. 

5.2. Multivariate Large-deviation Behavior 

First of all, we begin with the multivariate large-deviations of sample means, 

i.e.. 

Lemma 2.3 showed in Section 2.4 that a distribution which belongs to the 

TEIFR class has a moment generating function. Analogously, if the distribution 

F of X — ^ is a "two-sided multivariate IFR (TEMIFR)", then F also possesses 

a moment generating function. Since, for given j, {^ij ; i = 1,2,... ,n} are 

independent and have a TEMIFR distribution F, an upper bound of (5.1) will be 

obtained by using Markov's inequality explained in Section 1.2: 

Hence we may conclude that, by multivariate Chernoff's Theorem and Bahadur 

and Rao's [4] Lemma 2.4 (especially, equation (1.2)), 

Pr(X - f£>e). (5.1) 

P n 

mm mm 

n  ^ lnPr(X - ̂  > e) = Inp y(é) + On(l). 
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If X j and X ./ [ j  ^  j'  ) are independent, an upper bound of (5.1) turns out to be 
'J •] 

Pr(X - > e) 

i=i 

p 

j  =  l  J  

so that 

- n 
i=i 

1 _ P 
n  lnPr(X - ̂  > e) =: ^ Inp^(ej-) + On(l)-

i = l ^ 

Next, consider the multivariate large-deviations of sample medians, i.e., 

Pr(M - i£>§). 

Without loss of generality, we assume sample size n is an odd number, and take the 

simple case, p=2. Then, as we already showed in Section 2.3, 

Pr(Mi -/ij > ei, M 2 - f i 2 > ^ 2 )  

— Pr(Fej > -, Feg > ^), (5.2) 

where i® the indicator of the event Ml ^ ^1-
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In a similar way, an upper bound of (5.2) can be obtained as follows using the 

moment generating function of the bivariate binomial distribution: 

= (5.3) 

The bivariate binomial probability function was found by Wishart [41], viz., 

the probability of x-^ successes of the first type ( and n — x-^ failures ) and of zç 

successes of the second type ( and n — X2 failures ) is given by the following function 

of the two variables x-^ and X2'-

I . min(a;i, xn) / \ / \ 

where 

P21 = Pr( \st  event is success 2nd event is success ) 

P2Q = Pr( event is success 2nd event is failure ) 

PQ2 = Pr( l5^ event is failure 2nd event is success ) 

PQQ = Pr( Isi event is failure 2nd event is failure ) 

We define p = + PiQ, p' = PU + PQl, q = 1 -  p, 9' = 1 - p' and PQO = 

1 -PlO -  POl -Pll-  We note also that pgg pn -  PiQ PQl = Pn -  pp'• 

Then the moment generating function can be computed as 

POO + PIO^^^ +Poie^2 +piie^l+^2, 

so that '^2) turns out to equal 

exp(-^ - ̂ )(P00 +P01^^2 +Plie^l"^^2). 
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In order to obtain an upper bound (5.3), 

d t j ) ~  0 B'^d dil;j^j{ti , t2)/dt2 = 0 imply 

(PIO + Plie^2)e4 = pQQ + pQie^2 

and 

so that we get 

and 

Then we obtain: 

(POl +Plie^l)e^2 =poO 

2 PIO P l l  

2 POl Pll 

= 2[^P00 Pll + VPIO POl I 

=  P M i n ^ ^ 2 ) -

The upper bound (5.3) will be {2[ypQQ pn + V^IO POl]}""-

Therefore, 

n~^ lnPr(Mi -> ej, M2 - //2 ^ ^2) 

= ln{2[^poO Pll + VPIO POl]} + 071(1) (5.4) 

= lnpj|£(e)-h on(l). 

If Yi and Y2 are independent (e.g., Xj and X 2 are independent), then p-^i = pp' 

and pQQ = qq' imply pqq Pw = p%Q — PQi = pçp'ç', so that we obtain an upper 

bound (5.3): 

= [2^\/p9AT- (5.5) 
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5.3. Asymptotic covariances 

We will consider the asymptotic covariances of rounded sample means and 

rounded sample medians, which rely on the p-variate behaviors described in the 

previous section. However, we need only the bivariate analysis to examine the 

asymptotic covariances (i.e., p = 2). 

Now we begin with the asymptotic covariance of rounded sample means. It 

is also helpful to consider the four quadrants of the plane, and we can write the 

asymptotic covariance of rounded sample means as the sum of the twenty terms 

similar to those found in the analysis of the RLSEs in the p-variate regression 

model defined in Chapter 4. Lemma 4.5, showed that the first term of a certain 

series dominates the sum of the rest of the series in each quadrant. That sort of 

domination argument, together with Condition C3, can be easily appHed to the 

sample means, so that we may write 

= 2{Pr( > ej, X j - / x j > e j )  

- Pr( >  ej, X j  -  H j  <  - e j  )}(1 +  071(1)). 

Similar arguments, appearing in the proof of Theorem 4.6 about the asymptotic 
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covariance of RLSEs, allow the assertion that: 

where 

sgn{corr-j){2ei) ^(2y) ^Covn{Xi^^.,  ) 

— 4Pn,e^,ej(:K)(l + On(l)), 

P n ,€ j ^ ,€ j{ X )  

max{Pr( Xj - Xj - Hj > ej ), 

~  —  ^ i i  ^ j  ~  —  ~~^j ) } )  

corr^ j  is the correlation between 6^ and bj , and 

s g n { x )  =  <  

1 if a: > 0, 

0 if a; = 0, 

— 1 if X < 0. 

As we already discussed equation (4.10) in Section 4.3, it is true that 

I n  P n , e i , e j { X )  =  l n p ^ { e i , e j )  + 0 ^ ( 1 ) ,  

which leads to 

\nsgn{corrij)Covn{Xi^^.,  ) = lnpj-(ej,Cj). 

If X j and X y (j  ^ j') are independent, then Pr( X^ - > e^, Xj — /J-j > ej ) is 

equal to Pr( Xj—/Xj > e^, Xj-[ij < -ej ), so that Co%(Xj g^, Xj ) equals zero. 
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Next, consider the asymptotic covariances of rounded sample medians. With 

arguments similar to those yielding the asymptotic covariances of rounded sample 

means, one may, considering the four quadrants of the plane, express the asymptotic 

covariance of rounded sample median as the sum of twenty terms. Then Lemma 

4.5 can be applied to sample medians with Condition C3, to obtain 

2{Pr( M l  -  M j  -  f X j  >  e j  )  

- Pr( Ml - /ij > Ej, Mj - Hj < -€j )}(1 + OTi(l)), 

so that 

s g n { c o r r - ) { 2 e i )  ^ { 2 e j )  M j ^ ^ . )  

= 4Pn,ej,ej (M) exp(l + On(l)), 

where 

Pn,ei,ej{M) 

= max{Pr( M ^  -  >  e^, M j  -  >  e j  ) ,  

Pr( Mj -  P ' i >  Cj, M j  -  f i j  <  - e j  ) } .  

Hence we conclude that 

n^^^~^^^^9n{corrij)Covn{Mi^^.,  Mj^^^ = \npj^{ei,ej),  

since ln/'n,ej,ej(M) = lnp^{ej,ej) + 0^(1). 



82 

Chapter 3 examined the asymptotic variances of the rounded sample mean and 

the rounded sample median in the univariate Normal and Laplace cases. Here we 

shall treat only the multivariate Normal case. 

First of all, we need to find /O ^ the p-variate Normal case. Recall expression 

(4.5) from Chapter 4: 

'^xH) = exp(-e'< f 

where V_ is the variance and covariance matrix of X2, • • •, • 

Now, dij) j^{t)/dt = 0 gives r = so that we are led to equation (4.12) 

i^xiz) = exp(-^eVe), 

and thence to equation (4.13) 

Ti-lln^^(6) = -Vy-l€. (5.6) 

More specifically, when p — 2, the RHS of (5.6) turns out to equal 

which implies that the asymptotic covariance of rounded sample means in the p-

variate Normal distribution, satisfies 

lim n ̂  Mn sgn{ corr: a ) C ovn (X-. ,  % ;  ̂  .  ) 
n—>00 ^ ^ 

- 2 „2^2 _ _2 
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Secondly, we discussed the asymptotic covariance of rounded sample median 

in the Normal case. We can define, in equation (5.5),  p = Pr(%^ — > e^) = 

l-$(ej/cTj),  p'= PT{Xj - /xj  > ej) = 1 -  q = 1 -  p, and q'= 1 -  p'.  

Also assume (Tj = (Tj = 1, then 

POO = - H<H^ < ^j) = ^j)' 

POl = X j  -  f i j  >  e j )  =  

P l O  =  X j  -  <  e j )  =  $ ( 6 j )  -  $ ( e j ,  e j ) ,  

P l l  = > Cj) = 1 -  ̂ (e^) -  ̂ (ej) + $(e^,ej)-

Note that 

POO m = - $((%) - $(ej) + 

POl PlO = 

And note that, if X  j  and X  j f  are independent (i.e., pjl = pp')' 

POO Pll = PQl PlO = ^(^z')[l - *(Ej]*(Gj)[l - $(ej)]. 

In any event, (5.4) yields 

= 2{y$(e^,ej)[l - $(e^) - $(ej) + $(c^,Ej)] 

+ - ̂€ i , e j ) ] m e j )  -  $(e%,Cj)]}. 

Hence we conclude that the asymptotic covariance of rounded sample medians, in 

the Normal case, satisfies 
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^ lnsgn{corrij)Covn{Mi^^.,Mj^ ) 

5.4. Joint Asymptotic Efficiency 

After obtaining the asymptotic variance and covariance matrix of rounded sam­

ple means and rounded sample medians from the symmetric TEBIRF distribution, 

we might consider the issue of efficiency. As we did in Section 4.5, the joint asymp­

totic efficiency (JAE) will be considered, based on the determinant of the asymptotic 

variance-covariance matrix, say jF®|. 

Let us begin with the rounded sample means. In Section 4.5, it turned out 

that, as sample size increases, the asymptotic covariances will be negligible and so 

the determinant will equal the product of the asymptotic variances. Hence 

J =1 

P  
= n exp[Ti / )^(e ' ) ]+OM(l) ,  

i=l 
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so that 

Jim^n'hn\V' '{X)\= •£ 
i=i 

Here Py(') analogous to —^y(') defined in (2.39). 

Similarly, regarding the rounded sample medians, 

P  
|K%)|= + 

i=i 

p 
= l i  e ^ p [ n p M i ^ j ) ]  +  

;=i 

so that 

^llm^„-lln|F''(M)l= E P M l ^ j ) -
i=i 

Here again P ] \ j { - )  is analogous to —defined in (2.21). 

The asymptotic covariances formulated in the previous section are negligible 

when the JAE is considered. With the results obtained above, the JAEs of the 

rounded sample means and the rounded sample medians for the Normal distribu­

tion, and also for the Laplace distribution, can be given as follows: 

1. The JAE of the rounded sample means in the Normal distribution. 

Since p^{€j) = -(e|/2or|), 
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The JAE of the rounded sample means in the Laplace distribution. 

Since 

al 
Ej exp[ 

p 6 . exp[ ^ 

3 

i=i iy.4+- .4, 

V 
= 2 Ê 

i=i 

P 0"^ — ./cr| + 
I r y ^ J ^ 

p  

J=1 

The JAE of the rounded sample medians in the Normal distribution. 
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Since = 2^#(ej/c7y)[l - ̂ej/(Tj)\, 

i=l 

P 
= Ê 111 2 

j  = l  

1 P 
+2 iZ M^(ej/o-j)[i - H ^ j / ( ^ j ) ] } -

i=i 

4. The JAE of the rounded sample medians in the Laplace distribution. 

Since p^f{ej) = \/[e 

P  
lim M-^ln|y^(M)| = - T 

n->oo 2(T; 
j=i ; 

j'=i 
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6. OTHER ROUNDINGS 

Three kinds of rounding were mentioned in Section 1.1. Chapter 2 to Chapter 

5 considered rounding sample estimates which is the first case, i.e., compute 

exactly and then round the sample estimates. 

Now we may consider the second case; in other words, round %^'s, say and 

compute the sample mean. Kendall and Stuart [31] mention "Sheppard's corrections 

for grouping" with h = 2e, and find 

VarlXi,)  = Var{Xi) + 

so that the variance of the sample mean, ( X e ) ,  computed from the rounded indi­

vidual values, will be: 

= yarn(Y) + 

In other words, for all n and positive e, one has that, approximately, 

yarTi((Â7)) > (6.1) 

But Sheppard's corrections break down when certain conditions on "high-order 

contact" are violated. For example, Sheppard's corrections fail in the Normal case. 
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We might consider another way to think about this kind of rounding. Define 

Xe = X + Xe -  X = X + 6, 

where 6 = Xe — X is the "round-off quantity." Then 

Var{Xe) = Var{X) + Var{8) + 2C0V{XJ). 

2 
Since Var{6) — 

(v'Vor(A') - <  V a r { X e )  <  { ^ V a r ( X )  +  ̂ f .  

Hence we obtain 

l{\/Var(X) -  < VarniixT)) < \(^JVav(X) + 

Whereas Sheppard's corrections tell us that Varn{{Xç,)) is always larger than 

Varn{X), (6.1) is not always true, but depends on the size of e. This raises the 

problem of the nature of the correlation between the random variable X and the 

round-off quantity 8 which is unknown. 

We might also consider a third kind of rounding, that is, rounding the sample 

estimates after rounding individual Xj's. For example, the case of the sample mean 

will be examined. 

Let Xi be an i id random sample from cr^).  Let be the rounded 

sample mean, restricted to grid values with a rounding interval 2^2, which is the 

average of the individual values restricted to grid values corresponding to another 

rounding interval 2ei. Then it is possible to derive 

Varn{{Xe-^ = (2^2)^ Pr(|(.Yej^ ) — /^l > ^2)  ̂ xp(l + 07j(l)). 
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With a condition analogous to Condition Cl, it seems plausible that one can obtain 

the following: 

w~hnPr(|(Xe^) -/z| > 62) = ln{min[e~^2^ ^ ^ ^ c?iV(^, tr^)]} 
t  r n  J { 2 m - l ) e i  

= ln{nûne~^2^<j()ç^(f)} 

= lnp(ei,e2), 

so that it is likely to be true that 

n ~ ^  \ n V a r n { { X e ^ ) = l n p ( e i , e 2 )  +  O n ( l ) -

P{^\i^2) would not be easy to find in such a situation, but we can say that 

is a convex function of t. A general method, possibly useful in this 

case, for finding the minimum of a convex function can be based on the following 

lemma: 

Lemma 6.1 For a real number a and a positive e,  let  f{x) be a convex function on 

[a — e,  a + e] with f{a — e) > /(a) and f{a + e) > /(a).  Let f~ be the straight l ine 

t h r o u g h  f [ a  —  e )  a n d  f { a ) ,  a n d  b e  t h e  s t r a i g h t  l i n e  t h r o u g h  f { a  +  e )  a n d  f { a ) .  

Then f~{a + e) = 2/(a) — /(a — e) and f^{a — e) — 2/(a) — /(a + e).  Hence the 

minimum of f{x) exists on {a — e, a + e), and f{x) > mm{f~(a + e), f^{a — e)}. 
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Proof: 

Since /(•) is a convex function, 

/'(„) > /(») -/(» - e) 

and 

/(.) < /C"-')-/("). 

We may define, respectively, 

and 

/+(a;) = - a) + /(a), 

so that 

f ~ { a  +  e )  =  2 f { a )  -  f { a  - e) 

and 

/+(a - e) = 2/(a) - /(a + e). 

The minimum value of f { x )  exists on (a — e, a -f e) by its convexity. So for x  

belonging to (a — e, a), 

/(z) -

f { x ) - f { a )  f { a  +  e )  -  f { a )  
= [—-—:— - J(®-a) 
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and for x belonging to [a, a + e), 

f { x ) - f { a )  f { a ) - f { a - e )  

X — a 

> 0, 

] { x  -  a )  

so that 

f { x )  >  m m { f ~ { a  + e ) ,  /+(a - e)}, 

which completes the proof of Lemma 6.1. 
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