341 research outputs found

    Development of Bursaphelenchus xylophilus-specific microsatellite markers to assess the genetic diversity of populations from European forests.

    Get PDF
    The pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Buhrer, 1934), Nickle (Nematoda: Aphelenchoididae) is the causal agent of the pine wilt disease and is currently considered as one of the most important pests and pathogens in the world. Its introduction and spread in new forest ecosystems have considerable consequences both economically and environmentally. Therefore, it is of crucial importance to identify its invasion routes, to determine the origin of new outbreaks and to understand the invasion process of this species to prevent further dissemination of the disease in Europe. In order to address these questions using population genetic approaches, we have been developing a set of PWN-specific microsatellite markers, usable in routine conditions at the individual level, thanks to multiplex PCR coupled with a fast DNA extraction method. Microsatellites were isolated from a genomic library using a procedure combining DNA enrichment and high throughput pyrosequencing as recently described by Malausa et al. (2011). Primers were designed for 71 and 23 perfect and compound microsatellites, respectively, 26 of which were experimentally validated so far. Among them, 18 markers exhibited polymorphism after several rounds of amplification tests. Preliminary results on a set of 190 nematodes from 13 populations indicate a very low level of polymorphism in PWN populations from Portugal and Madeira Island, compared to populations from the native area in North America. The genotyping of a wide collection of samples from Europe, Asia and North America is currently underway in the laboratory. Assessing the genetic diversity of populations indeed constitutes the cornerstone to determine whether the European invasive PWN populations are the result of a single or several independent events of introduction

    European populations of Diabrotica virgifera virgifera are resistant to aldrin, but not to methyl-parathion

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated corn in North America and has recently begun to invade Europe. In addition to crop rotation, chemical control is an important option for D. v. virgifera management. However, resistance to chemical insecticides has evolved repeatedly in the USA. In Europe, chemical control strategies have yet to be harmonized and no surveys of insecticide resistance have been carried out. We investigated the resistance to methyl-parathion and aldrin of samples from nine D. v. virgifera field populations originating from two European outbreaks thought to have originated from two independent introductions from North America. Diagnostic concentration bioassays revealed that all nine D. v. virgifera field populations were resistant to aldrin but susceptible to methyl-parathion. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe, as there is no evident selection pressure to account for an increase of frequency of aldrin resistance in each of the invasive outbreaks in Europe. Our results suggest that organophosphates, such as methyl-parathion, may still provide effective control of both larval and adult D. v. virgifera in the European invasive outbreaks studied

    Structure and magnetism of self-organized Ge(1-x)Mn(x) nano-columns

    Get PDF
    We report on the structural and magnetic properties of thin Ge(1-x)Mn(x)films grown by molecular beam epitaxy (MBE) on Ge(001) substrates at temperatures (Tg) ranging from 80deg C to 200deg C, with average Mn contents between 1 % and 11 %. Their crystalline structure, morphology and composition have been investigated by transmission electron microscopy (TEM), electron energy loss spectroscopy and x-ray diffraction. In the whole range of growth temperatures and Mn concentrations, we observed the formation of manganese rich nanostructures embedded in a nearly pure germanium matrix. Growth temperature mostly determines the structural properties of Mn-rich nanostructures. For low growth temperatures (below 120deg C), we evidenced a two-dimensional spinodal decomposition resulting in the formation of vertical one-dimensional nanostructures (nanocolumns). Moreover we show in this paper the influence of growth parameters (Tg and Mn content) on this decomposition i.e. on nanocolumns size and density. For temperatures higher than 180deg C, we observed the formation of Ge3Mn5 clusters. For intermediate growth temperatures nanocolumns and nanoclusters coexist. Combining high resolution TEM and superconducting quantum interference device magnetometry, we could evidence at least four different magnetic phases in Ge(1-x)Mn(x) films: (i) paramagnetic diluted Mn atoms in the germanium matrix, (ii) superparamagnetic and ferromagnetic low-Tc nanocolumns (120 K 400 K) and (iv) Ge3Mn5 clusters.Comment: 10 pages 2 colonnes revTex formatte

    Variability of nuclear and mitochondrial ribosomal DNA of a truffle species (Tuber aestivum)

    Get PDF
    The intraspecific genetic variability of #Tuber aestivum$ was studied using molecular markers at various geographical scales. We used the polymerase chain reaction (PCR) coupled with restriction fragment length polymorphism (RFLP) analysis to examine the variation of the nuclear and mitochondrial ribosomal DNA (rDNA). RFLPs were found in the nuclear internal transcribed spacer (ITS) and three alleles were detected in the six populations analysed. No variability was found in mitochondrial rDNA. We found, in a very few cases, that truffles sharing different ITS genotypes could be present within a single symbiotic tree. (Résumé d'auteur

    Phenotypic trait changes in laboratory - reared colonies of the maize herbivore, Diabrotica virgifera virgifera

    Get PDF
    The North American and European maize pest Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) was used to assess whether conditions of the natal field, subsequent laboratory rearing, or genetic population origin affect phenotypic traits of fitness, activity, or morphometrics. Standardized laboratory bioassays with large sample sizes revealed that none of the 16 tested traits, except crawling behaviours, appeared consistently stable across all seven tested colonies. Environmental conditions in the natal field of the F 0 generation affected trait averages of the subsequently reared F 1 generation in laboratory in ca. 47% of cases, and trait variability in 67% of cases. This was apparent for fitness and morphometrics, but less obvious for activity traits. Early generation laboratory rearing affected trait averages in ca. 56% of cases: morphometrics changed; fecundity and egg survival increased from F 1 to F 2. Trait variability increased or decreased in 38% of cases. Laboratory rearing for over more than 190 generations affected the trait averages in 60% of cases, reflected by decreases in flight activity and increases in body size, weight, and fecundity to some extent. It had little effect on trait variability, especially so for morphometric variability. The genetic population origin affected average levels of 55% and variability of 63% of phenotypic traits. A comparison among D. v. virgifera studies might be difficult if they use different populations or laboratory colonies. It is advised to consider possible effects of original field conditions, laboratory rearing, and population genetics when planning comparative studies targeting fitness, activity, or morphometric questions regarding Diabrotica specie

    Strain and correlation of self-organized Ge_(1-x)Mn_x nanocolumns embedded in Ge (001)

    Full text link
    We report on the structural properties of Ge_(1-x)Mn_x layers grown by molecular beam epitaxy. In these layers, nanocolumns with a high Mn content are embedded in an almost-pure Ge matrix. We have used grazing-incidence X-ray scattering, atomic force and transmission electron microscopy to study the structural properties of the columns. We demonstrate how the elastic deformation of the matrix (as calculated using atomistic simulations) around the columns, as well as the average inter-column distance can account for the shape of the diffusion around Bragg peaks.Comment: 9 pages, 7 figure

    Genome scan of \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e for genetic variation associated with crop rotation tolerance

    Get PDF
    Crop rotation has been a valuable technique for control of Diabrotica virgifera virgifera for almost a century. However, during the last two decades, crop rotation has ceased to be effective in an expanding area of the US corn belt. This failure appears to be due to a change in the insect’s oviposition behaviour, which, in all probability, has an underlying genetic basis. A preliminary genome scan using 253 amplified fragment-length polymorphism (AFLP) markers sought to identify genetic variation associated with the circumvention of crop rotation. Samples of D. v. virgifera from east-central Illinois, where crop rotation is ineffective, were compared with samples from Iowa at locations that the behavioural variant has yet to reach. A single AFLP marker showed signs of having been influenced by selection for the circumvention of crop rotation. However, this marker was not diagnostic. The lack of markers strongly associated with the trait may be due to an insufficient density of marker coverage throughout the genome. A weak but significant general heterogeneity was observed between the Illinois and Iowa samples at microsatellite loci and AFLP markers. This has not been detected in previous population genetic studies of D. v. virgifera and may indicate a reduction in gene flow between variant and wild-type beetles

    European populations of \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e are resistant to aldrin, but not to methyl-parathion

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of cultivated corn in North America and has recently begun to invade Europe. In addition to crop rotation, chemical control is an important option for D. v. virgifera management. However, resistance to chemical insecticides has evolved repeatedly in the USA. In Europe, chemical control strategies have yet to be harmonized and no surveys of insecticide resistance have been carried out. We investigated the resistance to methyl-parathion and aldrin of samples from nine D. v. virgifera field populations originating from two European outbreaks thought to have originated from two independent introductions from North America. Diagnostic concentration bioassays revealed that all nine D. v. virgifera field populations were resistant to aldrin but susceptible to methyl-parathion. Aldrin resistance was probably introduced independently, at least twice, from North America into Europe, as there is no evident selection pressure to account for an increase of frequency of aldrin resistance in each of the invasive outbreaks in Europe. Our results suggest that organophosphates, such as methyl-parathion, may still provide effective control of both larval and adult D. v. virgifera in the European invasive outbreaks studied

    Role of a gamma-aminobutryic acid (GABA) receptor mutation in the evolution and spread of Diabrotica virgifera virgifera resistance to cyclodiene insecticides

    Get PDF
    The western corn rootworm, Diabrotica virgifera virgifera, is a damaging pest of cultivated corn that was controlled by applications of cyclodiene insecticides from the late 1940s until resistance evolved ∼10 years later. Range expansion from the western plains into eastern USA coincides with resistance development. An alanine to serine amino acid substitution within the Rdl subunit of the gamma-aminobutyric acid (GABA) receptor confers resistance to cyclodiene insecticides in many species. We found that the non-synonymous single nucleotide polymorphism (SNP) G/T at the GABA receptor cDNA position 838 (G/T838) of D. v. virgifera resulted in the alanine to serine change, and the codominant SNP allele T838 was genetically linked to survival of beetles in aldrin bioassays. A phenotypic gradient of decreasing susceptibility from west to east was correlated with higher frequencies of the resistance-conferring T838 allele in the eastern-most populations. This pattern exists in opposition to perceived selective pressures since the more eastern and most resistant populations probably experienced reduced exposure. The reasons for the observed distribution are uncertain, but historical records of the range expansion combined with the distribution of susceptible and resistant phenotypes and genotypes provide an opportunity to better understand factors affecting the species\u27 range expansion
    corecore