5,206 research outputs found

    Learning (and Teaching) On The Job: Developing and Extending the Skills Needed to Deliver Information Literacy Workshops

    Get PDF
    This article aims to bolster confidence in early career librarians or other information professionals who may be new to delivering presentations to student groups. By sharing their experiences, three librarians discuss the skills needed and show that these skills can be developed. Tom Guest, who joined the library as an early career professional in 2015; Katherine Turner, a mid-career professional who has been with the organisation ten years and only took on teaching responsibilities four years ago; Karen Carney, who joined Leeds Beckett’s Academic Support Team in 2012 soon after ending a previous career in the Civil Service

    Geometric structures on loop and path spaces

    Full text link
    Is is known that the loop space associated to a Riemannian manifold admits a quasi-symplectic structure. This article shows that this structure is not likely to recover the underlying Riemannian metric by proving a result that is a strong indication of the "almost" independence of the quasi-symplectic structure with respect to the metric. Finally conditions to have contact structures on these spaces are studied.Comment: Final version. To appear in Proceedings of Math. Sci. Indian Academy of Science

    Symmetry perspectives on some auxetic body-bar frameworks

    Get PDF
    Scalar mobility counting rules and their symmetry extensions are reviewed for finite frameworks and also for infinite periodic frameworks of the bar-and-joint, body-joint and body-bar types. A recently published symmetry criterion for the existence of equiauxetic character of an infinite framework is applied to two long known but apparently little studied hinged-hexagon frameworks, and is shown to detect auxetic behaviour in both. In contrast, for double-link frameworks based on triangular and square tessellations, other affine deformations can mix with the isotropic expansion mode.P.W. Fowler acknowledges support from the Royal Society/Leverhulme Trust in the form of a Senior Research Fellowship for 2013. T. Tarnai is grateful for financial support under OKTA grant K81146.This is the final published version distributed under a Creative Commons Attribution License, which can also be found on the publisher's website at: http://www.mdpi.com/2073-8994/6/2/36

    Noncommutative geometry, topology and the standard model vacuum

    Get PDF
    As a ramification of a motivational discussion for previous joint work, in which equations of motion for the finite spectral action of the Standard Model were derived, we provide a new analysis of the results of the calculations herein, switching from the perspective of Spectral triple to that of Fredholm module and thus from the analogy with Riemannian geometry to the pre-metrical structure of the Noncommutative geometry. Using a suggested Noncommutative version of Morse theory together with algebraic KK-theory to analyse the vacuum solutions, the first two summands of the algebra for the finite triple of the Standard Model arise up to Morita equivalence. We also demonstrate a new vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page

    Calculation of energy levels and transition amplitudes for barium and radium

    Get PDF
    The radium atom is a promising system for studying parity and time invariance violating weak interactions. However, available experimental spectroscopic data for radium is insufficient for designing an optimal experimental setup. We calculate the energy levels and transition amplitudes for radium states of significant interest. Forty states corresponding to all possible configurations consisting of the 7s7s, 7p7p and 6d6d single-electron states as well as the states of the 7s8s7s8s, 7s8p7s8p and 7s7d7s7d configurations have been calculated. The energies of ten of these states corresponding to the 6d26d^2, 7s8s7s8s, 7p27p^2, and 6d7p6d7p configurations are not known from experiment. Calculations for barium are used to control the accuracy.Comment: 12 pages, 4 table

    Structural Topology Optimization: Moving Beyond Linear Elastic Design Objectives

    Get PDF
    Topology optimization is a systematic, free-form approach to the design of structures. It simultaneously optimizes material quantities and system connectivity, enabling the discovery of new, high-performance structural concepts. While powerful, this design freedom has a tendency to produce solutions that are unrealizable or impractical from a structural engineering perspective. Examples include overly complex topologies that are expensive to construct and ultra-slender subsystems that may be overly susceptible to imperfections. This paper summarizes recent tools developed by the authors capable of mitigating these shortcomings through consideration of (1) constructability, (2) nonlinear mechanics, and (3) uncertainties
    corecore