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Abstract: Scalar mobility counting rules and their symmetry extensions are reviewed for
finite frameworks and also for infinite periodic frameworks of the bar-and-joint, body-joint
and body-bar types. A recently published symmetry criterion for the existence of equiauxetic
character of an infinite framework is applied to two long known but apparently little
studied hinged-hexagon frameworks, and is shown to detect auxetic behaviour in both. In
contrast, for double-link frameworks based on triangular and square tessellations, other affine
deformations can mix with the isotropic expansion mode.
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1. Introduction

Use of counting rules in the study of rigidity and mobility of frameworks has a venerable history,
going back to Maxwell’s 1864 rule for bar-and-joint frameworks [1], and its extension (due to
Calladine [2]) to account for the balance between the numbers of mechanisms (m) and states of
self-stress (s). Mobility criteria for body-and-joint assemblies involving counting of degrees of freedom
and constraints also appeared early on the scene [3,4]. In recent years, extensions of these classic
counting rules have been made, employing arguments based on point-group symmetry. It turns out
that “counting with symmetry” can often detect mechanisms and/or states of self-stress that cancel out
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in purely numerical terms in the balance m− s, but have different characteristic symmetries and do not
cancel in the reducible representation Γ(m) − Γ(s) [5]. Examples of this symmetry-based approach
include symmetry-adapted versions of the Maxwell Rule [5], the mobility criterion for body and joint
assemblies [6], and for bar-body systems [7]. Symmetry analyses have dealt with classes of system
such as rotating rings of tetrahedra [8], [N ]-loops [9] toroidal deltahedra [10] and various mechanical
toys and models [11–13]. Symmetry arguments have been used to derive conditions for the existence
of isostatic frameworks [14] and to discuss the flexibility of protein molecules [15]. Attention from
the mathematical, engineering and materials-science communities has now started to shift to periodic
systems. Several different mathematical approaches towards the treatment of periodic systems are
described in the proceedings of the 2012 conference on Rigidity of Periodic and Symmetric Structures
in Nature and Engineering [15–18].

Direct extension of symmetric Maxwell and mobility rules from point groups and finite objects
to unit-cell symmetry in infinite repetitive systems [18] gives criteria for detection of repetitive
(zero-wavevector) mechanisms and states of self-stress. In turn, analysis of these periodic mobility
rules leads to a symmetry-based criterion for “equiauxetic” behaviour [19]. Auxetic materials have
the property that they respond to stretching along one direction by expansion along the transverse
direction(s). Equiauxetic materials manage this in such a way that they have Poisson’s ratio −1.

The new symmetry theorem for equiauxetics gives an opportunity to look back at some frameworks
that were first discussed [20–23] before the term “auxetic” came into use [24] and to see how the
symmetry viewpoint enhances understanding. The particular frameworks that we have in mind are
hinged versions of hexagonal tessellations where rigid hexagons are linked by either one or two
pin-jointed bars per edge. (See Figure 1, the movement of which was described in a near-forty-year
old sketch by one of the present authors (T.T.).) The mechanism of the single-link version appeared in
Figure 6 of [20] and later in Figure 4.2.17 of [21] and in the appendix to [22]. A model of the double-link
version was published in [22] and [23]. In the double-link framework, pairing enforces parallel geometry
for the two hexagon edges that are coincident in the fully closed position.

As the analysis with a periodic symmetry extension of the mobility criterion for body-bar frameworks
will show, both frameworks have an auxetic expansion mode. Connection patterns with one and two
bars were later used as the inspiration for the construction of families of expanding polyhedra [12,13],
which in turn were intended to serve as mechanical models for aspects of pH-induced swelling of virus
particles [25]. Again, symmetry analysis proved especially helpful in understanding the mechanisms in
such “expandohedra” [12].

In view of the interdisciplinary nature of the material in this paper, it seems useful to give a short
lexicon of equivalences between mathematical and engineering/materials science terminology used here.
“Mechanisms” and “states of self-stress” are vectors in the left-nullspace and nullspace, respectively, of
the equilibrium matrix, a matrix which describes the relationship between internal and external forces
in a structure [26]. The “numbers” of mechanisms and states-of-self-stress are the dimensions of these
spaces. Any mechanism must also be a vector in the nullspace of the square symmetric “stiffness”
matrix for an unstressed structure [27], and hence is an eigenvector, or mode, with a corresponding
zero eigenvalue (stiffness). For the remaining definitions, we take a repetitive structure considered as a
meta-material that is loaded in a longitudinal direction. The “Poisson’s ratio” is the negative of the ratio
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of the strain (change in length/original length) in the perpendicular direction to that in the longitudinal
direction. For traditional materials, which get thinner when stretched, Poisson’s ratio is positive, but for
auxetic materials, Poisson’s ratio is negative. In the thermodynamic limit, Poisson’s ratio reaches−1. An
“equiauxetic mode” is thus a zero stiffness eigenvector that corresponds to equal expansion/contraction
in perpendicular directions.

2. Counting and Symmetry Versions of Periodic Mobility Rules

2.1. Pin-Jointed Frameworks

Maxwell’s 1864 rule for pin-jointed frameworks [1], in the extension due to Calladine [2] is

(2D) m− s = 2j − b− 3

(3D) m− s = 3j − b− 6
(1)

where the constant terms on the RHS represent subtraction of the admissible rigid-body motions. The
direct symmetry analogue of the Maxwell Rule [5] is

Γ(m)− Γ(s) = Γ(j)× ΓT − Γ(b)− ΓT − ΓR (2)

with

(2D) ΓT = Γ(Tx, Ty); ΓR = Γ(Rz)

(3D) ΓT = Γ(Tx, Ty, Tz); ΓR = Γ(Rx, Ry, Rz)
(3)

where 2D systems are considered to be restricted to the x, y plane, and the various Γ are representations of
the sets of mechanisms (m), states of self-stress (s), joints (j), bars (b), admissible rigid-body translations
(T ) and rotations (R), respectively. The theory of representations and its use in applied point-group
theory are discussed in many places, e.g., [28]. The representation Γ(object) collects the characters
χobject(S), where each χ is the trace of the matrix that relates the set of objects before and after application
of the symmetry operation S. In finite frameworks, the character χobject(S) for a set of scalars or objects
without directional behaviour is found by counting the number of objects in the set that are unshifted
by operation S. For objects such as vectors, resolution of the transformed object onto its old position is
again taken into account. Each Γ can be decomposed into a direct sum of irreducible representations of
the point group, using standard tables [29].

The scalar counting rule (1) is simply the character of the full symmetry equation under the identity
operation. Each additional class of symmetry operations has the possibility of generating an extra
counting relation, and extra information for the analysis. It has been said with some justification that
each conventional counting rule is just the tip of a symmetry-counting iceberg.

For periodic pin-jointed frameworks, the behaviour of a representative unit cell is considered, and
we look for mechanisms and states of self-stress that are propagated by translation of the unit cell,
i.e., that correspond to zero wavevector [30]. Furthermore, as discussed in [18], in the periodic case
the admissible deformations of the unit cell (excluding rigid-body motions) are: (in 2D) stretches in
two orthogonal directions and a single shear; (in 3D) stretches in three orthogonal directions and three
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independent shears. The periodic equivalent of Equation (1) is therefore

(2D) m− s = 2j − b+ 1

(3D) m− s = 3j − b+ 3
(4)

where the equation allows for the subtraction of admissible rigid-body motions for a periodic system
(two in 2D, three in 3D) from the total freedoms (the freedoms of the joints within the unit cell and the
allowed deformations of the cell itself). The reasoning behind this was discussed in [31]. Note that the
net change of +4 (2D) and +9 (3D) is the count of all affine transformations.

The symmetry equivalent of Equation (4) in both 2D and 3D (with the appropriate definitions of ΓT

and ΓR) is
Γ(m)− Γ(s) = Γ(j)× ΓT − Γ(b) + ΓT × ΓT − ΓT − ΓR (5)

where now the representations are calculated in the factor group that arises by division out of the
infinite group of translations from the space group of the lattice [32]. The factor group is isomorphic
to a point group. ΓT and ΓR are still given by Equation (3) in the new groups, and the combination
ΓT × ΓT − ΓT − ΓR is a constant reducible representation that can be calculated once and for all for any
given group.

2.2. Body-and-Joint Frameworks

Equation (5) is effectively the symmetry-adapted mobility criterion for a periodic bar-and-joint
framework. It is also useful to develop the equivalent criteria for body-and-joint and body-bar models.

For a finite system consisting of n bodies connected by g joints, where joint i permits fi relative
freedoms, the mobility (number of relative degrees of freedom) for this composite system can be found
by imagining first gluing all the joints rigidly and then restoring the appropriate freedoms at each
joint [3,4]. The result is

(2D) m− s = 3(n− g − 1) +

g∑
i=1

fi

(3D) m− s = 6(n− g − 1) +

g∑
i=1

fi

(6)

For periodic systems this becomes

(2D) m− s = 3(n− g − 1) +

g∑
i=1

fi + 4

(3D) m− s = 6(n− g − 1) +

g∑
i=1

fi + 9

(7)

In these counting rules, pin joints have fi = 1 and spherical joints have fi = 3.
The symmetry extensions of Equations (6) and (7) are couched in terms of the so-called

contact polyhedron C, which has vertices defined by the rigid elements of the structure, and edges
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defined by the joints connecting them. The result for a finite body-and-joint system in both 2D and
3D is [6]

Γ(m)− Γ(s) =
[
Γ(v,C)− Γ‖(e,C)− Γ0

]
× (ΓT + ΓR) + Γfreedoms (8)

where Γ(v,C) is the permutation representation of the vertices of C, Γ‖(e,C) is the representation of a
set of vectors along edges of C, Γ0 is the totally symmetric representation, Γfreedoms is the representation
of the set of all relative freedoms of the joints, and the translational and rotational representations ΓT

and ΓR have the usual definitions for each dimensionality.
Contributions to Γfreedoms are calculated according to the type of the joint, and its placement with

respect to symmetry elements [6,12,13]. Conversion of Equation (8) to deal with periodic systems
follows the reasoning used for bar-and-joint frameworks, and yields

Γ(m)− Γ(s) = [Γ(v,C)− Γ‖(e,C)]× (ΓT + ΓR) + Γfreedoms + ΓT × ΓT − ΓT − ΓR (9)

2.3. Body-Bar Frameworks

Finally, we deal briefly with body-bar frameworks. If n bodies are connected by b bars, the Tay
counting rule [33] gives

(2D) m− s = 3n− 3− b
(3D) m− s = 6n− 6− b

(10)

We can derive this counting rule directly from the body-joint Equation (6), if we consider a bar to
be a joint that removes five degrees of freedom. For body-bar frameworks, however, it is simpler to
begin with body freedoms and impose the bar constraints, rather than working through the gluing and
freeing-up procedure used for the various types of hinge in body-hinge arrangements. The symmetry
extension of Equation (10) is found by noting the scalar nature of the constraints imposed by bars. The
set of bar constraints that act to reduce the freedom of the bodies span Γ(b) which is equal to Γ(e,C),
the permutation representation of the edges of the contact polyhedron. The result for a finite body-bar
framework is [7]

Γ(m)− Γ(s) = [Γ(v,C)− Γ0]× (ΓT + ΓR)− Γ(e,C) (11)

The adaptation of this formula to periodic symmetry does not appear to have been stated explicitly
elsewhere, but it is easily seen to be

Γ(m)− Γ(s) = Γ(v,C)× (ΓT + ΓR)− Γ(e,C) + ΓT × ΓT − ΓT − ΓR (12)

with the usual dimension-dependent definitions of ΓT and ΓR. This is the equation we will need for the
discussion of the 2D hinged hexagonal frameworks.

3. Symmetry and Equiauxetic Frameworks

The type of auxetic behaviour that can be detected by symmetry is, as mentioned earlier, equiauxetic,
implying equal expansion/contraction in all directions and a Poisson’s ratio of −1. We note that a
Poisson’s ratio of −1 is a limiting property for an isotropic material treated as a continuum, as in
classical elasticity theory it implies that the ratio of the bulk modulus to shear modulus must be
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zero, and that the Young’s Modulus must also vanish. Symmetry-adapted mobility criteria such as
Equations (5), (9) and (12) can be used to provide a sufficient condition for the existence of equiauxetic
behaviour in any periodic framework for which we can calculate Γ(m)− Γ(s). The essential idea is that
an equiauxetic mode must be one that does not distinguish between orthogonal directions, i.e., it must
preserve rotational equivalence of x and y directions in 2D, or x, y and z in 3D. In 2D, the group must
contain a rotational axis of order at least 3, and in 3D the group must be cubic. In both cases, the mode
must belong to a non-degenerate representation.

For an equiauxetic mode to exist in 2D or 3D, it is therefore sufficient that Γ(m) − Γ(s) should
contain a positive weight of some non-degenerate mode of the correct type. What is the “correct” type?
The possible representations of auxetic modes in 2D have been listed [19]: they are those of A type in
groups with six-fold, four-fold or three-fold rotational axes, or of B type in groups with a six-fold axis.
(Representations of type A and B have character +1 and −1, respectively, under the generator rotation
for the principal axis.) In 3D they are those of A type in the cubic groups.

The hinged-hexagon frameworks that are the subject of the present paper belong to plane group p6,
which has a factor group isomorphic to C6, so that the presence of an unblocked mechanism of either
A or B symmetry would be sufficient to guarantee equiauxetic behaviour.

4. Two-Dimensional Hinged-Hexagon Frameworks

The single-link version of the hinged-hexagon framework is shown in Figure 1a, and the contact
polyhedron C1 for this framework is given in Figure 1b. The bodies associated with the vertices of
C1 are rigid hexagons. The pin-jointed bars, are associated with the edges of C1 and connect adjacent
hexagons to give a locally chiral 6-fold symmetry. The plane group of this 2D structure is therefore p6,
and the relevant point group is C6, as noted above.

A suitable unit cell is the rhombus shown in Figure 1d with 6-fold rotational axes at the corners,
additional 3-fold axes inside the cell, and 2-fold rotational axes at the cell centre and the centres of
the sides. We explore periodic behaviour of the infinite framework by varying k, the number of copies
of the smallest unit cell along each side of a larger unit cell that retains the rhomboidal shape. In the
present case, n is also equal to the number of hexagons per side of the enlarged cell. The dashed lines in
Figure 1c illustrate the choices k × k = 1× 1, 2× 2, 3× 3 and 4× 4. For all k, there is one hexagon on
the unique 6-fold rotational axis. For odd k one bar lies on each of the three distinct 2-fold axis within
the unit cell, whereas for even k no bar lies on any 2-fold axis.

A word about the method of calculation of the characters χ(S) for periodic systems may be in order.
In finite frameworks, as noted earlier, the character χobject(S) for a set of scalars or objects without
directional behaviour is simply found by counting the number of objects in the set that are unshifted by
operation S. In the case of a periodic framework, the procedure for calculating the character in the factor
group is essentially the same, except that objects are counted either if unshifted within the unit cell, or
if moved outside the unit cell but to a position where they can be shifted back to the original position
by a lattice translation. Boundary conditions are taken into account by attributing fractional weights to
objects on the edges and corners of the unit cell, or by considering distinct set members only. Where
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necessary, resolution of the transformed object is taken into account. Translations and rotations may be
taken as centred in the unit cell and their character can be taken from the standard tables [29].

Figure 1. Two infinite periodic frameworks composed of linked rigid regular hexagons.
(a) A framework with one linking bar per hexagon edge; (b) Contact polyhedron C1 for this
single-link case; (c) Framework with two linking bars per hexagon edge. In the double-link
case, the contact polyhedron C2 has a digon replacing every edge of C1; (d) Unit cell for
p6-symmetric linked-hexagon frameworks. The factor group is C6, with one 6-fold axis, two
additional 3-fold axes and three additional 2-fold axes (at cell centre and centres of left/right
and top/bottom edges).

(a)

(b)

(c)

(d)
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4.1. Single-Link Framework

The calculation of the net mobility Γ(m) − Γ(s) for the single-link hexagonal framework (shown in
Figure 1a) is set out below in the usual tabular form [5]:

Group C6 E C6 C3

C2︷ ︸︸ ︷
odd
k

even
k C−13 C−16

Γ(v,C) k2 1 1 1 4 1 1

×(ΓT + ΓR) 3 2 0 −1 −1 0 2

3k2 2 0 −1 −4 0 2

−Γ(e,C) −3k2 0 0 −3 0 0 0

+(ΓT × ΓT )− ΓT − ΓR 1 −1 1 5 5 1 −1

= Γ(m)− Γ(s) 1 1 1 1 1 1 1

Reduction of Γ(m)−Γ(s) is immediate here, as clearly Γ(m)−Γ(s) = A1 for all k. For any k there is a
symmetric breathing mode of the framework. We can identify this by inspection as a concerted rotation
of all hexagons with uniform equiauxetic expansion/contraction of the unit cell to maintain bar lengths.
This will be a finite mechanism if there is no blocking fully symmetric state of self-stress [34]. For the
case k = 1 the situation is clear, as all bars are equivalent, if any one bar is carrying tension, all bars carry
tension, and for general displacements along the path the hexagon cannot be in rotational equilibrium.
An exceptional non-generic case occurs at the fully extended configuration, where the state of self-stress
with all bars in tension is compatible with equilibrium, but in fact the motion remains unblocked at this
singular point.

Experimentation with physical models of finite portions of the single-link hexagon framework give an
impression of floppiness, suggesting that there may be extra flexibility to be identified, but the periodic
analysis indicates that these are likely to be boundary effects not present in the infinite framework.

4.2. Double-Link Framework

For the double-link hexagonal framework (shown in Figure 1c), the corresponding calculation is:

Group C6 E C6 C3

C2︷ ︸︸ ︷
odd
k

even
k C−13 C−16

Γ(v,C) k2 1 1 1 4 1 1

×(ΓT + ΓR) 3 2 0 −1 −1 0 2

3k2 2 0 −1 −4 0 2

−Γ(e,C) −6k2 0 0 0 0 0 0

+(ΓT × ΓT )− ΓT − ΓR 1 −1 1 5 5 1 −1

= Γ(m)− Γ(s) 1− 3k2 1 1 4 1 1 1
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Here, the freedoms grow as 3k2 but the constraints grow as 6k2, leading to a heavily over-constrained
system for all k. For k = 1, the reducible representation Γ(m) − Γ(s) = A − B − E1, indicating an
uncancelled totally symmetric mechanism. The general case can be formulated in terms of the regular
representation Γreg (which has χreg(S) = |G| for S = E and χreg(S) = 0 otherwise, where |G| is the
order of the point group). The expressions valid for all k are:

(odd k) Γ(m)− Γ(s) = 2A+ E2 −
1

2
(k2 + 1)Γreg

(even k) Γ(m)− Γ(s) = A− 1

2
(k2)Γreg

(13)

With k = 1, these equations give Γ(m) − Γ(s) = 2A + E2 − (A + B + E1 + E2) = A − B − E1,

as before. The case k = 1 is a special one, as Equation (13) predicts a totally symmetric equiauxetic
mechanism, and the argument used for the single-link framework again applies: equivalence of all bars
implies that the mechanism is not blocked and hence finite for general displacements of the framework
along the path. However, reasoning based on symmetry alone is not helpful for k > 1, since, from
Equation (13) all irreducible representations of C6 occur in Γ(m) − Γ(s) with negative weight: in other
words, only states of self-stress are detected by symmetry. The factor group analysis for k > 1 no longer
enforces the equivalence of all bars, no longer forcing the parallel pairing of bars that is required for the
k = 1 motion.

5. Frameworks based on Other Regular Tessellations

For completeness, we briefly consider the linked frameworks that can be based on the other
regular tessellations of the plane, by equilateral triangles and by squares. Simple counting shows
that a single-link framework based on either of these tessellations will be highly under-constrained.
However, the double-link cases are potentially more interesting. In the case of the double-link triangular
framework, each body has six constraining bars, with each bar joined to one neighbour, and hence this
framework will be locally isostatic [35]. The double-link square framework, with eight shared bars per
body, is clearly over-constrained.

5.1. Double-Link Framework based on the Triangular Tessellation

The arrangement of bodies and bars in this framework and the corresponding contact polyhedron and
unit cell are shown in Figure 2. The plane group is p6 and the point group is C6. The usual tabular
calculation for Γ(m) = Γ(s) gives the results shown below.
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Group C6 E C6 C3 C2 C−13 C−16

Γ(v,C) 2k2 0 2 0 2 0

×(ΓT + ΓR) 3 2 0 −1 0 2

6k2 0 0 0 0 0

−Γ(e,C) −6k2 0 0 0 0 0

+(ΓT × ΓT )− ΓT − ΓR 1 −1 1 5 1 −1

= Γ(m)− Γ(s) 1 −1 1 5 1 −1

Figure 2. An infinite periodic framework composed of double-linked rigid equilateral
triangles. (a) Framework with two linking bars per triangle edge; (b) Contact polyhedron C,
which has a digon representing the pair of bars linking a given pair of triangles; (c) Unit cell
for p6-symmetric double-linked-triangle framework. The factor group is C6, with one 6-fold
axis, two additional 3-fold axes and three additional 2-fold axes (at cell centre and centres of
left/right and top/bottom edges).

(a)

(b)

(c)
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An interesting feature of the calculation for this framework is that Γ(m) − Γ(s) evaluates to exactly
(ΓT × ΓT ) − ΓT − ΓR, the representation of the affine deformations of the unit cell denoted by Γa in
previous work [19]. This results from the exact cancellation of body freedoms and bar constraints, which
is an instance of the symmetry extension of the notion of local isostaticity introduced in [18]. We note
that the present body-bar example is locally symmetry-isostatic for all k, as is the bar-and-joint distorted
kagome lattice of space group p31m [18].

Specifically, the calculation shows here that, for all k, Γ(m) − Γ(s) = A + E2 − E1, indicating
a constant set of three mechanisms consisting of an isotropic expansion mode and a pair of shear
deformations, which is perhaps best understood as a set of independent dilations across three lines at
120◦ to each other, and a pair of states of self-stress. It is straightforward to find the forms of the E1 pair
of states of self-stress from the fact that they transform under the operations of the group in the same
way as the pair of translations {Tx, Ty} in the plane. For each state of self-stress in this {x, y}-like pair,
the bars in each double-link pair are under equal and opposite tension and compression.

For this framework, isotropic expansion is possible, but is not the only allowed affine deformation,
and therefore a general motion of the framework will mix isotropic expansion and shear deformation.

5.2. Double-Link Framework based on the Square Tessellation

The arrangement of bodies and bars in this framework and the corresponding contact polyhedron and
unit cell are shown in Figure 3. The plane group is p4 and the point group is C4. The usual tabular
calculation gives

Group C4 E

C4︷ ︸︸ ︷
odd
k

even
k

C2︷ ︸︸ ︷
odd
k

even
k

C−14︷ ︸︸ ︷
odd
k

even
k

Γ(v,C) k2 1 2 1 4 1 2

×(ΓT + ΓR) 3 1 1 −1 −1 1 1

3k2 1 2 −1 −4 1 2

−Γ(e,C) −4k2 0 0 0 0 0 0

+(ΓT × ΓT )− ΓT − ΓR 1 −1 −1 5 5 −1 −1

= Γ(m)− Γ(s) 1− k2 0 1 4 1 0 1

The mobility for general k is therefore:

(odd k) Γ(m)− Γ(s) = A+B − E − 1

4
(k2 − 1)Γreg

(even k) Γ(m)− Γ(s) = A− 1

4
(k2)Γreg

(14)

For k > 1, all irreducible representations appear in the reducible representation Γ(m) − Γ(s) with
either zero or negative weight, and so no mechanisms are detected by symmetry, whereas a quadratically
increasing number of states of self-stress are detected for increasing unit-cell size. Only for k = 1 are
mechanisms detected by symmetry for this framework. The general equations reduce to

Γ(m)− Γ(s) = A+B − E
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indicating two independent mechanisms, comprising an isotropic A expansion mode and a B shear in
which expansion occurs across vertical lines with simultaneous contraction across horizontal lines. The
pair of states of self-stress is {x, y}-like in the sense described earlier.

Figure 3. An infinite periodic framework composed of double-linked rigid squares.
(a) Framework with two linking bars per square edge; (b) Contact polyhedron C, which
has a digon representing the pair of bars linking a given pair of squares; (c) Unit cell for
p4-symmetric double-linked-square framework. The factor group is C4, with two 4-fold
axes (at cell centre and corners) and two additional 2-fold axes (at centres of left/right and
top/bottom edges).

(a)

(b)

(c)

As with the triangular framework, isotropic expansion here is not the only allowed affine deformation
of the double-link square tessellation.
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6. Conclusions

Auxetic materials and substances have a huge variety of actual and proposed applications, from shock
absorbers and self-cleaning filters to tunable photonics and strain amplifiers on the molecular scale
(to take just the selection of proposals cited in the introduction of one recent paper [36]).

Analysis of some examples of hinged frameworks using periodic symmetry reveal the essential
equiauxetic mechanism shared by these systems. We note that a comprehensive catalogue of 2D periodic
frameworks considered as candidates for auxetic behaviour has been compiled [37]. (See also [36].)
Some of these can be considered as periodic arrays of rigid plates, variously hinged: Star Tilings A,
B and C in the catalogue correspond to single-hinge versions of the triangular, square and hexagonal
tessellations of the plane, respectively.

In periodic structures found in Nature, the system can often be considered to be free from boundary
effects, in that the number of unit cells is of the order of Avogadro’s Number which for practical purposes
is effectively infinite, and the system is considered to obey strict 2D or 3D toroidal boundary conditions.
Engineered structures consist of much numbers of units that are smaller by many orders of magnitude,
and edge/perimeter/boundary effects may be significant, especially in small physical models as we noted
above for single-link hexagon frameworks. Analysis using ideal periodic symmetry gives a criterion for
identifying what is a bulk property and what a boundary effect in these cases.

Finally, we note that, although we have taken an “analytical” approach here, using essentially only
pencil-and-paper calculations and human reasoning about the interplay in the counting between stresses
and mechanisms, it is clear that there is scope for building automated algorithms that incorporate finite
and periodic point-group symmetry to reach these conclusions.
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