2,458 research outputs found
Spin dynamics in the antiferromagnetic phase for electron-doped cuprate superconductors
Based on the --- model we have calculated the dynamical spin
susceptibilities in the antiferromagnetic (AF) phase for electron-doped
cuprates, by use of the slave-boson mean-field theory and random phase
approximation. Various results for the susceptibilities versus energy and
momentum have been shown at different dopings. At low energy, except the
collective spin-wave mode around and 0, we have primarily observed
that new resonance peaks will appear around and equivalent
points with increasing doping, which are due to the particle-hole excitations
between the two AF bands. The peaks are pronounced in the transverse
susceptibility but not in the longitudinal one. These features are predicted
for neutron scattering measurements.Comment: 5 pages, 3 figures, published version with minor change
Multi-site mean-field theory for cold bosonic atoms in optical lattices
We present a detailed derivation of a multi-site mean-field theory (MSMFT)
used to describe the Mott-insulator to superfluid transition of bosonic atoms
in optical lattices. The approach is based on partitioning the lattice into
small clusters which are decoupled by means of a mean field approximation. This
approximation invokes local superfluid order parameters defined for each of the
boundary sites of the cluster. The resulting MSMFT grand potential has a
non-trivial topology as a function of the various order parameters. An
understanding of this topology provides two different criteria for the
determination of the Mott insulator superfluid phase boundaries. We apply this
formalism to -dimensional hypercubic lattices in one, two and three
dimensions, and demonstrate the improvement in the estimation of the phase
boundaries when MSMFT is utilized for increasingly larger clusters, with the
best quantitative agreement found for . The MSMFT is then used to examine
a linear dimer chain in which the on-site energies within the dimer have an
energy separation of . This system has a complicated phase diagram
within the parameter space of the model, with many distinct Mott phases
separated by superfluid regions.Comment: 30 pages, 23 figures, accepted for publication in Phys. Rev.
Critiquing Variational Theories of the Anderson-Hubbard Model: Real-Space Self-Consistent Hartree-Fock Solutions
A simple and commonly employed approximate technique with which one can
examine spatially disordered systems when strong electronic correlations are
present is based on the use of real-space unrestricted self-consistent
Hartree-Fock wave functions. In such an approach the disorder is treated
exactly while the correlations are treated approximately. In this report we
critique the success of this approximation by making comparisons between such
solutions and the exact wave functions for the Anderson-Hubbard model. Due to
the sizes of the complete Hilbert spaces for these problems, the comparisons
are restricted to small one-dimensional chains, up to ten sites, and a 4x4
two-dimensional cluster, and at 1/2 filling these Hilbert spaces contain about
63,500 and 166 million states, respectively. We have completed these
calculations both at and away from 1/2 filling. This approximation is based on
a variational approach which minimizes the Hartree-Fock energy, and we have
completed comparisons of the exact and Hartree-Fock energies. However, in order
to assess the success of this approximation in reproducing ground-state
correlations we have completed comparisons of the local charge and spin
correlations, including the calculation of the overlap of the Hartree-Fock wave
functions with those of the exact solutions. We find that this approximation
reproduces the local charge densities to quite a high accuracy, but that the
local spin correlations, as represented by , are not as well
represented. In addition to these comparisons, we discuss the properties of the
spin degrees of freedom in the HF approximation, and where in the
disorder-interaction phase diagram such physics may be important
Topological Defects and the Spin Glass Phase of Cuprates
We propose that the spin glass phase of cuprates is due to the proliferation
of topological defects of a spiral distortion of the antiferromagnet order. Our
theory explains straightforwardly the simultaneous existence of short range
incommensurate magnetic correlations and complete a-b symmetry breaking in this
phase. We show via a renormalization group calculation that the collinear
O(3)/O(2) symmetry is unstable towards the formation of local non-collinear
correlations. A critical disorder strength is identified beyond which
topological defects proliferate already at zero temperature.Comment: 7 pages, 2 figures. Final version with some changes and one replaced
figur
Development of a coaxial plasma gun for space propulsion final report
Current sheet accelerators and pulsed plasma thrustors for spacecraft propulsio
Recommended from our members
Epidermal growth factor receptor variant III mediates head and neck cancer cell invasion via STAT3 activation.
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) where aberrant signaling downstream of this receptor contributes to tumor growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. We previously reported that EGFRvIII is expressed in up to 40% of HNSCC tumors where it is associated with increased proliferation, tumor growth and chemoresistance to antitumor drugs including the EGFR-targeting monoclonal antibody cetuximab. Cetuximab was FDA-approved in 2006 for HNSCC but has not been shown to prevent invasion or metastasis. This study was undertaken to evaluate the mechanisms of EGFRvIII-mediated cell motility and invasion in HNSCC. We found that EGFRvIII induced HNSCC cell migration and invasion in conjunction with increased signal transducer and activator of transcription 3 (STAT3) activation, which was not abrogated by cetuximab treatment. Further investigation showed that EGF-induced expression of the STAT3 target gene HIF1-α, was abolished by cetuximab in HNSCC cells expressing wild-type EGFR under hypoxic conditions, but not in EGFRvIII-expressing HNSCC cells. These results suggest that EGFRvIII mediates HNSCC cell migration and invasion by increased STAT3 activation and induction of HIF1-α, which contribute to cetuximab resistance in EGFRvIII-expressing HNSCC tumors
Recovery of zeta-chain expression and changes in spontaneous IL-10 production after PSA-based vaccines in patients with prostate cancer.
Circulating T lymphocytes of patients with prostate cancer have been reported to have functional deficits, including low or absent zeta-chain expression. To determine whether these functional impairments could be reversed by prostate specific antigen-based vaccination therapy, 10 patients treated with recombinant human prostate specific antigen plus GM-CSF and eight others receiving prostate specific antigen plus oil emulsion in two pilot clinical trials were evaluated prior to and after vaccination for several immunologic end points, including zeta-chain expression and cytokine production by circulating T cells as well as the frequency of T cells able to respond to prostate specific antigen in ELISPOT assays. The flow cytometry assay for zeta-chain expression was standardized to allow for a reliable comparison of pre- vs post-vaccination samples. Prior to therapy, the patients were found to have significantly lower zeta-chain expression in circulating CD3(+) cells and a higher percentage of zeta-chain negative CD3(+) and CD4(+) cells than normal donors. The patients\u27 peripheral blood mononuclear cells spontaneously produced more IL-10 ex vivo than those of normal controls. After vaccination, recovery of zeta-chain expression was observed in 50% of patients in both clinical trials. Also, spontaneous IL-10 secretion by peripheral blood mononuclear cells decreased following immunotherapy in patients treated with prostate specific antigen and GM-CSF. The frequency of prostate specific antigen-reactive T cells was detectable in 7 out of 18 patients vs 4 out of 18 patients prior to vaccination. Only one of 18 patients was a clinical responder. The vaccine had stimulatory effects on the patients\u27 immune system, but post-vaccine immune recovery could not be correlated to progression-free survival in this small cohort of patients with prostate cancer
Photoemission spectra of : a theoretical analysis
Recent angle resolved photoemission (ARPES) results for the insulating
cuprate have provided the first experimental data
which can be directly compared to the (theoretically) well--studied problem of
a single hole propagating in an antiferromagnet. The ARPES results reported a
small bandwidth, providing evidence for the existence of strong correlations in
the cuprates. However, in the same experiment some discrepancies with the
familiar 2D model were also observed. Here we discuss a comparison
between the ARPES results and the quasiparticle dispersion of both (i) the
Hamiltonian and (ii) the three--band Hubbard model in the
strong--coupling limit. Both model Hamiltonians show that the experimentally
observed one--hole band structure can be approximately reproduced using
reasonable values for , or the direct oxygen hopping amplitude .Comment: 11 pages, RevTex version 3.0, 3 postscript figures, LaTeX file and
figures have been uuencoded
Sr impurity effects on the magnetic correlations of LaSrCuO
We examine the low-temperature magnetic properties of moderately doped
LaSrCuO paying particular attention to the spin-glass (SG) phase and the C-IC
transition as they are affected by Sr impurity disorder. New measurements of
the low-temperature susceptibility in the SG phase show an increase of an
anomalously small Curie constant with doping. This behaviour is explained in
terms of our theoretical work that finds small clusters of AFM correlated
regions separated by disordered domain walls. The domain walls lead to a
percolating sequence of paths connecting the impurities. We predict that for
this spin morphology the Curie constant should scale as , a
result that is quantitatively in agreement with experiment. Also, we find that
the magnetic correlations in the ground states in the SG phase are
commensurate, and that this behaviour should persist at higher temperatures
where the holes should move along the domain walls. However, our results show
that incommensurate correlations develop continuously around 5 % doping,
consistent with recent measurements by Yamada.Comment: 30 pages, revtex, 8 .ps format figures (2 meant to be in colour), to
be published in Physical Review B
Spin and Charge Texture around In-Plane Charge Centers in the CuO_2 planes
Recent experiments on La_2Cu_{1-x}Li_xO_4 show that although the doped holes
remain localized near the substitutional Li impurities, magnetic order is
rapidly suppressed. An examination of the spin texture around a bound hole in a
CuO_2 plane shows that the formation of a skyrmion is favored in a wide range
of parameters, as was previously proposed in the context of Sr doping. The spin
texture may be observable by elastic diffuse neutron scattering, and may also
have a considerable effect on NMR lineshapes.Comment: 4 pages, postscript file, hardcopy available upon request, to appear
in PR
- …
