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1.0 FOREWORD 

This r epor t  i s  presented i n  p a r t i a l  fu l f i l lmen t  of  cont rac t  

NAS-3-5759; it contains a descr ip t ion  of t he  work car r ied  out  during 

t h e  fou r th  year o f  an experimental program t o  evaluate t h e  pulsed 

coaxia l  plasma gun as a t h r u s t o r  for space vehicles.  

t h e  f irst  t h r e e  years i s  summarized i n  t h e  f i n a l  repor t s  of t h e  previous 

The research of 

cont rac ts .  1,2, 3 

2.0 INTRODUCTION 

It i s  apparent now t h a t  pulsed plasma t h r u s t o r s  can be 

operated i n  two modes. I n  the  f i r s t  mode t h e  current d i s t r i b u t i o n  

moves and, ac t ing  l i k e  a piston, expel l s  plasma. I n  the  second mode 

plasma i s  accelerated by a s ta t ionary  cur ren t  d i s t r ibu t ion ;  i n  t h i s  

case n e u t r a l  gas o r  plasma moves in to  t h e  cu r ren t  carrying region and 

i s  accelerated by magnetic and/or aerodynamic forces  as i n  D. C. plasma 

th rus to r s .  

was conceived and tested a t  t h i s  laboratory las t  year; t he  name Pulsed 

Arc Gun has been coined f o r  t h i s  acce lera tor .  

The concept of  pulsing what are e s s e n t i a l l y  D. C. a cce l e ra to r s  

Conventional pulsed plasma guns, with moving cur ren t  sheets, 

s u f f e r  from the  disadvantage t h a t  the pulse-time i s  l i m i t e d  by t h e  

t r a n s i t  t i m e  of t h e  cur ren t  sheet along t h e  e lec t rodes .  

are from 1 t o  10 psec, consequently low inductance energy storage 

capac i tor  banks are required and rapid propel lan t  switching must be 

employed. 

of  discharges a r e  necessary and a t t a in ing  adequate r e l i a b i l i t y  may be 

Typical periods 

For p r a c t i c a l  missions tens  and poss ib ly  hundreds of  mi l l ions  

1 



d i f f i c u l t .  A l l  o f  these  problems are eased i n  t h e  Pulsed Arc Gun;  t h e  

period can be increased t o  1 mil l i sec  without d i f f i c u l t y ,  t h e  capac i tor  

bank need not be c lose ly  coupled t o  t h e  acce le ra to r  ( a  very desirable 

f ea tu re  and mandatory f o r  a t t i t u d e  con t ro l  and s t a t i o n  keeping applica- 

t i o n s ) ,  and slower gas switching can be used. Also, t h e  e f f i c i ency  

should be higher than i n  conventional acce le ra to r s  because magnetic 

energy i s  not being continuously fed t o  an expanding region behind a 

moving cur ren t  sheet and there  i s  no need t o  supply the  l a rge  amounts 

of  i n t e r n a l  energy produced when a moving cur ren t  sheet e n t r a i n s  and 

compresses the  n e u t r a l  gas ahead o f  it. 3 

The f irst  th ree  years of t h i s  program were devoted e n t i r e l y  

t o  moving cur ren t  sheet accelerators;  during the  p a s t  year, an increasing 

amwt of e f f o r t  has been spent inves t iga t ing  t h e  Pulsed Arc GLI because 

of  i t s  p o t e n t i a l  advantages as a th rus to r .  

3.0 REVIEW OF PRWIOUS WORK 

A t  t he  beginning of t h i s  program t h e  coaxia l  gun was chosen 

because it i s  simple i n  concept, it o f f e r s  t h e  p o s s i b i l i t y  of extreme 

r e l i a b i l i t y ,  and i s  a device i n  which the  plasma i s  always t i g h t l y  coupled 

t o  the  magnetic f i e l d  as d i s t i n c t  from inductive guns. The o r i g i n a l  design 

w a s  based on t h e  model of a current sheet acce lera t ing  a constant mass of 

gas;’ a gun with a shor t  barrel length and a correspondingly shor t  e l e c t r i -  

c a l  period was used i n  order t o  l i m i t  t h e  time ava i l ab le  f o r  t h e  growth 

o f  i n s t a b i l i t i e s  a t  t h e  in t e r f ace  between t h e  magnetic f i e l d  and the  

plasma. It w a s  considered t h a t  these cons t r a in t s  would a l s o  minimize 

the e lec t rode  erosion. The gun was operated i n  t h e  gas-triggered mode 

2 



r .  

because t h e  lifetime of high current switches i s  too shor t  f o r  p r a c t i c a l  

missions, and because scaling laws ind ica ted  t h a t  an extremely low source 

inductance (- 10'' H) was necessary f o r  e f f i c i e n t  operation. 

I n  the  f i rs t  year a major  e f f o r t  w a s  spent i n  developing 

diagnostic methods t o  measure the  e l e c t r i c  and magnetic f ie lds  i n  t h e  

gun. were made from which t h e  ion 

dens i ty  and ion  ve loc i ty  d i s t r ibu t ions  were deduced under t h e  assumptions 

t h a t  t h e  e l ec t rons  were the  main current c a r r i e r s  and t h a t  t he re  w a s  no 

r a d i a l  plasma motion. The conclusion drawn from these  measurements w a s  

t h a t  an ion iza t ion  wave propagated i n  t h e  acce lera tor ,  imparting some 

forward momentum t o  t h e  ions b u t  i n s u f f i c i e n t  t o  cause s i g n i f i c a n t  mass 

accumulation i n  the  cur ren t  sheet. We now be l i eve  t h a t  t h e  assumptions 

out l ined  above are not valid,  t h a t  ion cur ren t  i s  important, and t h a t  

t he  p l a s m  i s  e i t h e r  brought t o  the ve loc i ty  of t h e  cur ren t  sheet, or 

dr iven  i n t o  t h e  e lec t rodes .  

Detailed measurements of B8 and E 
z 

A t  t h e  beginning of t he  second year a change i n  t h e  gas  d i s t r i -  

bu t ion  i n  the  acce le ra to r  caused an i n s t a b i l i t y  i n  t h e  cur ren t  sheet. 

The current d i s t r ibu t ion ,  which was i n i t i a l l y  azimuthally symmetric, 

collapsed i n t o  a loca l ized  spoke. Later i n  t h e  year we found t h a t  t h i s  

i n s t a b i l i t y  could be avoided by in j ec t ing  propel lan t  uniformly i n t o  t h e  

in t e re l ec t rode  region. However, i n  recent experiments with a gun i n  

which t h e  gas d i s t r i b u t i o n  was loca l ized  t h e  i n s t a b i l i t y  d id  not occur. 

4 

During t h e  second and t h i r d  cont rac tua l  periods t h e  energy 

storage capacitance w a s  increased, while t he  p a r a s i t i c  inductance w a s  

decreased, i n  order  t o  improve the energy t r a n s f e r  t o  the  acce le ra to r .  



.. 
By t h e  end of t he  second year  65% of t h e  i n i t i a l  s tored  energy could 

be delivered t o  the  acce le ra to r  and t h e  thermal e f f i c i ency  w a s  25%. 

During the  t h i r d  year, a capac i tor  development porgram w a s  

s t a r t e d  t o  reduce the  size, weight, and cost  of t he  capacitor,  while 

a t  t h e  same t i m e  doubling t h e  capacitance. I n  t h e  course of t h i s  work a 

lightweight, low loss, low impedance d i s t r ibu ted  parameter pu lse- l ine  

w a s  developed.' 

made; it showed t h a t  ohmic lo s ses  were small, t h a t  8% of the  stored 

energy could be  t r ans fe r r ed  t o  t h e  acce le ra to r  and t h a t  t h i s  w a s  shared 

approximately equally between work done on the  cur ren t  sheet and magnetic 

f i e l d  energy, as expected. The maximum calorimetric e f f i c i ency  obtained 

w a s  45% a t  an exhaust ve loc i ty  of about 7 cm/psec. 

Using t h i s  pu lse- l ine  an accurate energy inventory was 

Toward the  end of the  t h i r d  year a t h e o r e t i c a l  ana lys i s  of  t h e  

It showed t h a t  about one-half of the  energy loss mechanisms w a s  made. 

work done on the  cur ren t  sheet appeared as i n t e r n a l  energy i n  the  plasma 

(because the  cur ren t  sheet w a s  moving a t  a constant ve loc i ty  in to  a gas 

of  uniform density) and t h a t  t h i s  energy would be l o s t  i n  r ad ia t ion  i n  

a t i m e  comparable t o  the  acce lera t ion  p e r i ~ d . ~  

of  t h e  device, when operated i n  t h i s  mode, could not be g r e a t e r  than 

about 5%. This conclusion w a s  borne out  by the  experimental observation 

t h a t  t h e  maximum thermal e f f ic iency  w a s  45% f o r  a wide range of operating 

conditions.  

Consequently t h e  e f f i c i ency  

Two methods t o  Overcome t h i s  l imi t a t ion  were proposed; i n  t h e  

one scheme t h e  propel lan t  w a s  t o  be entrained i n  the  cur ren t  sheet a t  

t h e  beginning o f  t he  acce lera t ion  cycle and then acce lera ted  through 

4 
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vacuum; i n  the o the r  scheme the  plasma w a s  t o  be accelerated by a 

s t a t iona ry  cur ren t  sheet as i n  steady-state acce le ra to r s .  

4 .1  Moving Current Sheet Accelerators 

4.1.0 Discussion 

Coaxial guns with moving cu r ren t  shee ts  can be operated i n  

two modes; t h e  propel lan t  i s  e i t h e r  picked up continuously by the 

cur ren t  sheet (the snow-plow and shock models) or entrained i n i t i a l l y  

and t h e r e a f t e r  acce lera ted  by it (the slug model). I n  some acce le ra to r s  

t h e  cur ren t  sheet reaches the end of t he  e l ec t rodes  before the capac i tor  

has completely discharged; i n  t h i s  s i t u a t i o n  the discharge may 'hang up' 

a t  t h e  end of the acce le ra to r  and behave i n  a manner analogous t o  the 

Pulsed Arc Gun o r  it may continue t o  propagate and plume out  i n t o  t h e  

vacuum chamber. 

t h e  device i s  maximized i f  most of t h e  s tored  energy i s  delivered after 

t h e  plasma reaches t h e  end of t h e  e lec t rodes .  

providing t h e  t h r u s t  e f f i c i ency  i s  a l s o  high. However, t he re  are seve ra l  

e f f e c t s  t h a t  can occur i n  t h i s  mode t h a t  lead  t o  erroneous measurements; 

t h e  most common a r e  phenomena associated w i t h  cu r ren t s  t h a t  flow from 

the acce le ra to r  t o  t h e  w a l l s  of the vacuum tank, entrainment of neu t r a l  

gas from the vacwm tank, and adsorption of propel lan t  on the  e lec t rodes .  

I n  our  experiments w e  always insure that  tank cu r ren t s  a r e  not present  

One frequently finds t h a t  the thermal e f f i c i ency  of 

This mode i s  acceptable 

and we maintain a low ambient pressure - 
problem. 

Tor r  t o  avoid t h e  entrainment 

5 
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4.1.1 Switched Gun Experiments 

The objec t ive  i n  these  experiments w a s  t o  study the  dynamics 

of  a current sheet moving i n t o  neut ra l  gas of known density.  

voltage switching w a s  employed so t h a t  t h e  e l ec t rodes  and the  vacuum 

chamber could be uniformly f i l l e d  t o  the  desired pressure  before the  

discharge w a s  i n i t i a t e d .  The system w a s  pumped ou t  after each shot 

then r e f i l l e d  with the  t es t  gas. 

High 

Figure 1 i s  a diagram of t h e  switched gun. The switch cons i s t s  

of  two e lec t rodes  separated by a 1 mm gap pressured with dry a i r  t o  

65 p.s . i .  

t h e  gap pressure i s  reduced b y  opening an e l e c t r i c a l l y  operated tap .  

The only d i f f i c u l t y  incurred was i n  making t h e  inductance low enough so 

t h a t  the  discharge cur ren t  could bui ld  up i n  a t i m e  sho r t  compared with 

t h e  pulse-time. 

o f  which abcut 5 P I  w a s  i n  t h e  spark. The gun was connected t o  a pulse- 

l i n e  with an impedance of 17 m Sa and a pulse-time of 0.8 psec. 

The gap breaks down and t h e  switch becomes conductive when 

The lowest inductance obtained was approximately 6 nH 

The magnetic and e l e c t r i c  f i e l d s  assoc ia ted  with the  current 

shee t  were measured f o r  n i t rogen  a t  t h ree  d i f f e r e n t  d e n s i t i e s  (100, 200, 

and 400 m Torr ) .  

same as observed before i n  a gas-triggered gun. Figure 2 shows o s c i l l o -  

grams o f  Be a t  d i f f e r e n t  axial  pos i t ions  and Figure 3 t h e  corresponding 

p r o f i l e s  of Be; i n  t h i s  case the  f i l l i n g  pressure w a s  200 m Torr and the  

pulse- l ine  w a s  charged t o  4.5 kV. 

and a t  each f i l l i n g  pressure a current sheet 1 t o  2 cm t h i c k  formed which 

c a r r i e d  8% or more of t h e  current; the  r a d i a l  e l e c t r i c  f i e l d  behind the  

The behavior of t h e  cur ren t  sheet was e s s e n t i a l l y  the  

The inner e lec t rode  w a s  always negative 

6 



€ 
0 

n 
W 

w - 1  
(33 
Z Q  

-10 
L L k  

a 

I 



c 

Z 

E 
0 
rc) 

0 
II 

N 

E 
0 
rc) 

- 
II 

N 

E 
0 

€ 
0 

rl) rc) 

cj rc) 

II I1 

N N 

E 
0 

N 

€ 
0 
IC) 

rc) 

. 
II 

N 

0 
J \  a 

- .  
0 

c 

2 
w 
0 
a 
I- 
z - 
E 

0 
I- 

a 

€ 
0 
0 
N 

.. 
cu 

8 



I ' .  
I 
I 

. .  
t 

I 

I 
I 

9 



- 
shee t  was equal t o  x v t o  within experimental e r r o r .  (vs i s  t h e  

measured sheet speed.) These two f a c t s  argue s t rongly  t h a t  t he re  can 

be l i t t l e  plasma behind t h e  current sheet and t h a t  t h e  n e u t r a l  gas t h a t  

it sweeps up must be e i t h e r  retained or driven i n t o  t h e  e lec t rodes .  

If it i s  assumed t h a t  the  cur ren t  sheet a c t s  as a pe r fec t  

0 s  

snow-plow and does not l o s e  mass, then i t s  pos i t i on  can be calculated 

as follows: 

where 

B2 d - - -  

.'. B2dt  = 21.1, Mv = 2p0 p z dz/dt 
0 

I = t o t a l  current 

MI = i n i t i a l  mass of gas pe r  u n i t  l ength  of b a r r e l  

L '  = inductance pe r  u n i t  l ength  of barrel 

z = axial pos i t ion  of t h e  cur ren t  sheet 

p = neu t ra l  gas dens i ty  

The double i n t e g r a l  i n  Equation ( 4 )  can be evaluated from t he  measured 

gun cur ren t  and then used t o  p red ic t  t he  pos i t i on  of t he  current sheet 

on t h e  assumption t h a t  t he  current sheet r e t a i n s  a l l  t he  mass it encounters. 

10 
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The ca lcu la ted  sheet pos i t ion  agrees very w e l l  with the  

measurements ( see  Figure 4) providing t h e  value of B a t  t h e  inner  

e lec t rode  i s  used i n  Equation ( 3 ) .  

t h e  theory given by Fishman and Petschek5 or indeed any theory t h a t  

assumes t h a t  t he  cur ren t  sheet i s  normal with the  center  e lec t rode .  

This r e s u l t  i s  i n  agreement with 

The main conclusion drawn from these experiments w a s  t ha t ,  

f o r  p r a c t i c a l  purposes, t he  simple snow-plow model i s  adequate f o r  

explaining t h e  dynamics of current shee ts  i n  coaxia l  guns operating 

a t  cur ren ts  - 100 kA, and p a r t i c l e  d e n s i t i e s  - t o  10 /cc when 

t h e  in t e re l ec t rode  region i s  uniformly f i l l e d  with gas. 

16 

4.1.2 Gas-Triggered Gun Experiments 

4.1.2.1 Uniform Mass Loading 

The objec t ive  i n  these experiments w a s  t o  determine the  

dependence of t he  cur ren t  sheet velocity,  the  exhaust velocity,  and 

t h e  ca lor imet r ic  e f f i c i ency  on the gun voltage, current, and dimensions, 

i n  a gas-triggered gun uniformly f i l l e d  with propel lan t .  

ments follow-up those described i n  the  previous section; however, it 

i s  d i f f i c u l t  t o  make a d i r e c t  comparison between theory and experi-  

ment i n  t h i s  case because of unce r t a in t i e s  i n  the  absolute value of t h e  

n e u t r a l  gas density.  

These experi-  

The gun i s  shown schematically i n  Figure 5; t h e  propel lan t  

i s  in jec ted  through severa l  s e t s  of  gas po r t s  spaced uniformly along 

t h e  e lec t rodes .  Several pulse-lines,  with d i f f e r e n t  impedances and 

pulse-times were used; t h e  method of construction of these  l i n e s  i s  

described i n  Reference 3. 

11 



.. 

E 2  '4 i 
W 3  NI 3 3 N V l S  

i2 

a i v  

4 a> 

rlllll a d N C 

xv 



.. 

i 
3 
(3 

w z 
J 

w 
v, 
J 
3 a 

c 

t 
1 

a 

a 

w > 
A 
> 
v, 

(3 

J 

cn 
(3 

w 
I 
I- 
LL 
0 

a 

2 
111 
(3 

D 

a 

a - 

0 
t- 
t 
W 
I 
0 cn 

- 
a 

. .  



. 
. .  

Typica l  oscillograms of  voltage and current a r e  shown i n  

Figure 6, together w i t h  magnetic probe da ta  taken w i t h  two probes 

placed symmetrically on opposite s ides  of t h e  b a r r e l  and a t  mid- 

radius.  

a t  0, 2, 4, 6, and 8 em from the  insu la tor .  

Superimposed are B values observed b y  t h e  probes when placed e 
I n  t h i s  case the  b a r r e l s  

were 10 em long and it i s  seen tha t  t h e  cur ren t  sheet reaches the  

muzzle as the  cur ren t  begins t o  decrease. 

The cur ren t  sheet velocity can be determined from t h e  

magnetic probe da ta  or by observing t h e  magnitude of the f i r s t  s t e p  

onthe voltage waveform. The l a t t e r  technique i s  poss ib le  because 

t h e  current reaches i t s  terminal ve loc i ty  i n  a f e w  t en ths  of a micro- 

second and propagates a t  constant ve loc i ty  f o r  the duration of t h e  

pulse.  When I - 0 the  following equation appl ies :  

L' v - -  vB - 
vo LI v + ZL 

(5) 

Where Vo = applied voltage, V 

u n i t  length of t he  electrodes, v = curren t  sheet velocity,  and ZL = 

l i n e  impedance. 

within 15% of the  v e l o c i t i e s  determined by B 

= breech voltage, L '  = inductance pe r  B 

Veloc i t ies  calculated using Equation ( 5 )  are t y p i c a l l y  

probes. e 
The experiments described i n  t h e  previous sec t ions  suggest 

t h a t  the  simple snow-plow model can be used t o  determine the  func t iona l  

dependence of v. The momentum equation 

- - -  B2 - (Mv) = kv + M i  
d t  * 

14 
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and t h e  experimental observation t h a t  v -- E 

most of t h e  discharge period leads t o  t h e  r e l a t ionsh ip  

0, and i o f o r  B ’  

where the  mass dens i ty  o i s  assumed uniform, A i s  t h e  c ross -sec t iona l  

area of the  in te re lec t rode  space and I i s  the  t o t a l  cur ren t .  

The cur ren t  sheet ve loc i ty  was measured as a function of cur ren t  f o r  

H2, N2, and Xe propellants;  t h e  data shown i n  Figure 7 w a s  obtained 

w i t h  a gun which was 10.3 em i n  length and connected t o  a pulse-line 

with an impedance of 17 m s2 and pulse-time of 0.8 psec. 

speed i s  approximately proportional t o  current, as predicted by 

Equation (7 ) .  I n  these  measurements gun cur ren t  was varied by changing 

t h e  gun voltage, consequently the  neu t r a l  gas dens i ty  w a s  not constant. 

However, t he  neu t r a l  gas  dens i ty  changed by less than a f a c t o r  of 1 .5  

over t he  voltage range used and since t h e  sheet speed depends on 

P -1’2, it was hardly a f fec ted  by t h i s  change. A t y p i c a l  neu t r a l  dens i ty  

p r o f i l e ,  measured with a fast ionization gauge3 i s  shown i n  Figure 8; 

t h e  e r r o r s  are r e l a t i v e  with an absolute e r r o r  of f 5%. 

shee t  speeds agree with the  values predicted by Equation (7)  within 

t h i s  accuracy. 

The sheet 

The measured 

The exhaust ve loc i ty  and ca lor imet r ic  e f f i c i ency  depend on 

t h e  matching between the  acce lera tor  length, t h e  sheet ve loc i ty ,  and 

t h e  pulse-time. Oscillograms taken with a negatively-biased Faraday-Cup 

i o n  probe s i tua t ed  140 em from the gun are shown i n  Figure 9 f o r  t h ree  

16 
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e lec t rode  lengths, 7 cm, 10 cm, and 16 cm. 

t h e  e lec t rode  arrangement shown i n  Figure 6 and a pulse- l ine  of  5.6 m R 

impedance and 2.2 psec pulse-time. 

t h e  cur ren t  w a s  80 kA; t he  current sheet ve loc i ty  w a s  3.9 cm/psec. 

average exhaust ve loc i ty  i s  approximately equal t o  t h e  sheet speed i f  

t h e  cur ren t  sheet reaches t h e  muzzle j u s t  before  t h e  cur ren t  starts t o  

decay. 

I t  should be noted t h a t  i f  t h e  current j u s t  starts t o  decay as t h e  

cur ren t  sheet reaches t h e  muzzle then a t  t h i s  t i m e  t h e  magnetic f i e l d  

energy within the acce le ra to r  i s  about equal  t o  t h e  work done on the 

cur ren t  sheet and t h a t  t h i s  f i e l d  energy must be recovered i n  order  t o  

have e f f i c i e n t  operation! 

This da t a  was taken w i t h  

The gun voltage w a s  1100 v o l t s  and 

The 

This behavior was common t o  a l l  of t h e  acce le ra to r s  inves t iga ted .  

The main conclusions from these experiments were t h a t  the 

cur ren t  sheet dynamics agree with a simple snow-plow model, t h e  plasma 

emerges a t  t h e  cur ren t  sheet ve loc i ty  i f  it i s  driven t o  t h e  ends of  

t h e  e lec t rodes  and t h a t  t h e  thermal e f f i c i ency  i s  maximized at about 

4576 when t h e  cur ren t  pulse ends as the cur ren t  sheet reaches the muzzle. 

4.1.2.2 Non-Uniform Mass Loading 

The primary objec t ive  of these experiments i s  t o  make a 

mass-loaded cur ren t  sheet acce lera te  continuously and thereby reduce 

t h e  energy expended i n  i n t e r n a l  energy. 

p r i n c i p l e  by employing a gas d i s t r ibu t ion  which i s  peaked a t  t h e  breech 

of t he  acce lera tor .  The p r a c t i c a l  d i f f i c u l t i e s  involved relate t o  

This objec t ive  can be m e t  i n  

ob ta in ing  t h e  desired gas d is t r ibu t ion ,  

i n  the  cur ren t  sheet and recovering the  

maintaining azimuthal symnetry 

magnetic f i e l d  energy behind 



t he  cur ren t  sheet.  

So f a r  we have not obtained s i g n i f i c a n t  acce le ra t ion  of  a 

cur ren t  sheet.  The most severe problem i s  g e t t i n g  t h e  appropriate gas 

d i s t r i b u t i o n  a t  a high enough density so t h a t  t h e  cur ren t  can be 

drawn from t h e  plasma without se r ious ly  depleting t h e  t o t a l  mass. 

A t  f irst ,  w e  t r i e d  t o  employ gas t r i gge r ing  and ad jus t  t h e  gas d i s t r i -  

bu t ion  by the  arrangement o f  t h e  gas  ports;  t h i s  method was not satis- 

f ac to ry  so a high voltage switch was added t o  t h e  gun. A t  t h e  same 

t i m e  a f a s t - ac t ing  gas valve w a s  i n s t a l l ed .  

studied now. 

This system i s  being 

Several  experiments were performed using a gas-triggered 

gun with a s ingle  set of gas  po r t s  near the  breech. The cur ren t  sheet 

propagated much t h e  same as i n  the  uniform f i l l  experiments u n t i l  it 

approached t h e  region where t h e  g a s  density dropped. 

t h e  leading edge of  cur ren t  sheet accelerated while t he  c e n t r a l  por t ion  

d i d  not. 

A t  t h i s  point 

I n  another experiment the pulse-time w a b  e X k i i k 2  ts rkxt  

10 psec by using a low impedance pulse- l ine  and e lec t rodes  with a l a rge  

rad ius  r a t i o .  I n  t h i s  case the  load impedance w a s  l a r g e  compared t o  

t h e  l i n e  impedance, and seve ra l  voltage r e f l e c t i o n s  i n  t h e  l i n e  occurred 

before  the  breech voltage reversed. 

The cur ren t  sheet formed a t  the  breech of t h e  gun, propagated along t h e  

b a r r e l s  i n  t h e  same manner as i n  t h e  uniform f i l l  experiments, then 

continued p a s t  t he  muzzle of the gun and plumed out  i n t o  t h e  vacuum 

chamber. 

Axial  gas i n j e c t i o n  was employed. 

Most of t he  energy was delivered t o  t h e  plasma when the  cur ren t  

21 
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shee t  w a s  p a s t  the  muzzle. These e q e r i m e n t s  were done i n  a small 

vacuum chamber which unfortunately w a s  not instrukented t o  measure 

thermal e f f ic iency .  

I n  some of  these  experiments we found t h a t  up t o  5% of t he  

t o t a l  cur ren t  w a s  returning v i a  the vacuum tank walls. 

were eliminated by ' f l o a t i n g '  the gun and gas valve assembly. 

These cur ren ts  

4.2 S ta t ionarv  Current Sheet Accelerators 

4.2.1 Pulsed Arc Gun with Cylindrical  Electrodes 

The i n i t i a l  experiments on t h e  Pulsed Arc Gun were done 

with a gun with a 3-inch diameter ou te r  e lec t rode  and a 1.5-inch 

diameter inner  electrode. The gun used i s  shown i n  Figure 10. It 

w a s  connected t o  a lumped parameter pu lse- l ine  made from 240 p 

capacitors;  t he  pulse- l ine  typ ica l ly  consisted of 5 sec t ions  and had an 

impedance of-100 m R and a pulse-time of  -150 psec. The l i n e  w a s  

always charged t o  less than 1 kV. 

p e l l a n t  gas which w a s  pulsed through twelve 3/8-inch holes  i n  the  

i n s u l a t o r  a t  t h e  back of t he  gun. 

a t  low gas dens i ty  the gas i n i t i a l l y  en ter ing  t h e  b a r r e l s  w a s  weakly 

ionized by a gas-triggered discharge between t h e  ign i to r ,  shown i n  

Figure 10 and the  main electrodes.  

were used with t h i s  gun. 

The gun was gas-triggered by the  pro- 

I n  order t o  encourage rapid breakdown 

Both nitrogen and hydrogen propel lan ts  

Figure 11 shows oscillograms of gun cu r ren t  and voltage and 

i o n  probe output. 

t h e  gun and i s  a l s o  present on Bo signals,  measured with magnetic probes. 

The probe s igna l s  show that the magnetic f i e l d  has gross  azimuthal 

symmetry and t h a t  t he  current density i s  uniformly d i s t r i b u t e d  between 

The noise i n  the  voltage t r a c e  i s  c h a r a c t e r i s t i c  of 

22 
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the e lec t rodes  w i t h  l i t t l e  current flowing p a s t  t h e  end of  the center  

e lec t rode .  

Experiments w i t h  t he  Pulsed Arc Gun are complicated by a 

tendency f o r  cur ren t  t o  flow from one e lec t rode  t o  t h e  vacuum tank 

and then t o  r e tu rn  t o  the  o the r  electrode v i a  the  tank w a l l s .  This 

cur ren t  i s  evidenced by  arc-spots on the walls and i s  measured by a 

Rogowski b e l t  around t h e  conductor which connects the ground e lec t rode  

of t h e  gun t o  t h e  tank. 

observed t o  flow t o  the tank w a l l s .  E l e c t r i c a l l y  i s o l a t i n g  the  gun 

from the  tank o f f e r s  no so lu t ion  because, i n  t h i s  case, a discharge 

tends t o  occur across  the i so l a t ing  in su la to r  between t h e  gun and t h e  

tank; i f  breakdown occurs at  t h i s  i n s u l a t o r  tank cur ren t  flows but  

it i s  d i f f i c u l t  t o  measure. Insu la t ing  the e n t i r e  end flange does 

not appear worthwhile because arc-spots o f t en  appear on t h e  s ide  w a l l s  

and it i s  impractical  t o  insu la te  t h e  e n t i r e  tank. Tank cu r ren t s  

genera l ly  occur when t h e  gun voltage exceeds 150 vo l t s ;  because lower 

vol tages  should be adequate f o r  producing plasma v e l o c i t i e s  of  1 - 5 x 

10 cm/sec the  operation of t h e  gun has been r e s t r i c t e d  t o  voltages 

where the tank cur ren ts  do not flow. 

Up t o  5% of t h e  t o t a l  gun cu r ren t  has been 

6 

Figure 12 shows oscillograms of the  output from an ion  energy 

analyzer ( s e e  Appendix 1-1) used t o  measure ion energies i n  the  exhaust. 

The exhaust velocity,  determined by t ime-of-fl ight between the ion probe 

and t h e  energy analyzer i s  - 3-4 cm/Lsec i n  the case i l l u s t r a t e d .  

energy analyzer shows that t h e  ion energy i s  g r e a t e r  than 70 e V  and that  

some doubly ionized ions are probably present during t h e  acce lera t ion  

process.  

The 
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The use of ion  probes and p a r t i c l e  analyzers i s  complicated 

by t h e  f a c t  that t h e  exhaust plasma leaves  t h e  gun with an e l e c t r o s t a t i c  

p o t e n t i a l  c lose  t o  t h e  cathode poten t ia l .  Figure 13 i l l u s t r a t e s  t h i s  

behavior. The two pairs o f  oscillograms compare t h e  te rmina l  voltage 

with the  plasma p o t e n t i a l  measured by a f l o a t i n g  probe 260 cm downstream. 

I n  both cases t h e  cen te r  electrode i s  t h e  cathode during the  f i r s t  h a l f -  

cycle while the  ou te r  e lec t rode  becomes t h e  cathode after voltage reversa l .  

However, i n  t he  f i rs t  case the  outer e lec t rode  i s  a t  ground p o t e n t i a l  

while i n  the  second case t h e  center e lec t rode  i s  grounded. I n  order t o  

avoid high plasma p o t e n t i a l s  t h e  gun i s  normally operated with the  center  

electrode, which i s  the  cathode, a t  ground po ten t i a l .  However, as can 

be seen from Figure 13, t h e  plasma s t i l l  acqui res  a p o t e n t i a l  of approxi- 

mately 100 V during the  second half-cycle and a b i a s  voltage i n  excess 

of t h i s  must be applied t o  an i o n  probe i f  it i s  t o  function properly 

a f t e r  voltage reversa l .  

Measurements o f  calorimetric e f f i c i ency  show t h a t  t y p i c a l l y  

about 15% of the  e l e c t r i c a l  energy supplied t o  t h e  terminals of t he  

gun appears i n  t h e  exhaust. 

voltage i s  increased and tank currents are allowed t o  flow! 

Higher e f f i c i e n c i e s  a r e  measured i f  t h e  gun 

To c l a r i f y  experimentally the  d i f fe rence  between the  Pulsed 

Arc Gun and t h e  conventional coaxial gun t h e  b a r r e l  l ength  was increased 

from 7 cm t o  25 cm. The objec t  of t h i s  change w a s  t o  see i f  the  cur ren t  

d i s t r i b u t i o n  could be held near t he  breech insu la tor ,  by continually 

feeding it with gas, o r  whether it would always move t o  the  end of t he  

e lec t rodes .  I n  every case t h e  discharge reached the  end of the  e lec t rodes ;  

however, two d i s t i n c t  modes of operation were observed. The f i r s t  occurred 
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i f  t h e  i g n i t o r  was not used; i n  t h i s  case breakdown w a s  delayed and 

t h e  b a r r e l s  f i l l e d  with gas before f i r i n g .  

down occurred as soon as gas entered the  b a r r e l s  which consequently 

were e s s e n t i a l l y  empty a t  breakdown. 

was determined with a fast ion iza t ion  gauge. 

I n  the  second case break- 

The n e u t r a l  dens i ty  d i s t r i b u t i o n  

With g a s - f i l l e d  b a r r e l s  magnetic probe measurements showed 

t h a t  a d i s t i n c t  cur ren t  sheet propagated along t h e  b a r r e l s ;  when the  

sheet reached the  muzzle it slowly thickened u n t i l  cur ren t  w a s  flowing 

throughout the  in t e re l ec t rode  space and within 5-10 cm of  t h e  breech 

insu la tor .  With empty b a r r e l s  the in t e re l ec t rode  space rap id ly  f i l l e d  

with d i f fuse  cur ren t  b u t  without a precursor cur ren t  sheet.  Figure 14 

shows p r o f i l e s  of  Be and compares the  two cases. 

To inves t iga t e  t h e  current flow f u r t h e r  a small Eogowski 

probe was made which measured the  l o c a l  value of j * t h i s  probe con- 

firmed t h e  results obtained with the  B 

t h a t  t he  cur ren t  dens i ty  w a s  non-uniform and t h a t  t he  cur ren t  w a s  

apparently ca r r i ed  i n  numerous filaments. Figure 15 shows oscillograms 

obtained with t h e  Rogowski probe a t  d i f f e r e n t  pos i t i ons  along t h e  length  

of  the  ba r re l s ;  each oscillogram cons i s t s  of  s eve ra l  t r a c e s  overlaid.  

If t h e  height of t h e  smaller spikes corresponds t o  a s ingle  fi lament 

of  cur ren t  threading t h e  Rogowski then each fi lament c a r r i e s  about 200 

amp; t h i s  f i gu re  i s  t y p i c a l  of arc-spots and it i s  concluded t h a t  t h e  

e l e c t r o n  cur ren t  i s  produced predominantly by arc-spots.  

r’ 

probes b u t  showed dramatically 0 

Figure 16 i s  a space-time p l o t  showing the  pos i t i on  of t he  

cur ren t  sheet, f o r  t h e  case of  gas - f i l l ed  ba r re l s ,  and a l s o  the  pos i t i on  

of  t h e  plasma f r o n t  e j ec t ed  from the  gun. 

t i m e  after t h e  cur ren t  sheet reaches t h e  end of  t h e b a r r e l  plasma i s  

It can be seen t h a t  a shor t  
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produced which t r a v e l s  a t  2-3 cm/psec. 

4.2.2 Pulsed Arc Gun with Conical Electrodes 

I n  view of  t h e  low e f f i c i enc ie s  obtained with t h e  Pulsed 

Arc Gun using a 3-inch ou te r  electrode it w a s  decided t o  use an 

e lec t rode  geometry similar t o  that used i n  High Performance Arc Jets 

and H a l l  Current Accelerators.  

The configuration of the f irst  e lec t rode  arrangement i s  

shown i n  Figure 17. 

can be produced by t h e  c o i l  around t h e  anode. 

t h e  magnetic f i e l d  l i n e s  from t h i s  c o i l  and t h e  flux d e n s i t i e s  normally 

used. 

f o r  60 msec. 

region 30 msec after t h e  magnetic f i e l d  i s  switched on. 

magnetic f i e l d  i n h i b i t s  breakdown, and t o  overcome t h i s  problem a t h i r d  

e lec t rode  i s  connected t o  a 0.03 pF capac i tor  charged between 500 and 

1500 vol t s ;  breakdown occurs between t h i s  i g n i t o r  e lec t rode  and the  main 

electrodes,  thus i n i t i a t i n g  the  main discharge. Or ig ina l ly  t h e  i g n i t o r  

was placed i n  the  cathode t i p  but g r e a t e r  r e l i a b i l i t y  has been achieved 

wi th  it i n  t he  in t e re l ec t rode  space. 

An ex te rna l  magnetic f i e l d  of a f e w  kilogauss 

Figure 17 a l s o  shows 

The c o i l  i s  supplied from a 24 v o l t  b a t t e r y  which i s  pulsed on 

The discharge i s  i n i t i a t e d  by puls ing  gas i n t o  the  e lec t rode  

The ex te rna l  

Cathodes of both copper and tungsten have been used with no 

not iceable  change i n  gun performance, however, e ros ion  was severe with 

tine copper cathode. 

A number of changes t o  the  e lec t rode  configuration have been 

made using t h e  gun shown i n  Figure 17. I n i t i a l l y  t h e  coaxia l  region 

between the  anode and the  cathode w a s  not l i n e d  with i n s u l a t o r  and a 

r a d i a l  discharge took place i n  t h i s  region; t h e  plasma output w a s  low 
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and severe erosion occurred a t  the rear end of t he  anode near t h e  gas 

input  holes.  When t h e  coaxia l  region was l i n e d  w i t h  insu la tor ,  so t h a t  

t h e  discharge was r e s t r i c t e d  t o  the cathode t i p  and t h e  conica l  p a r t  of 

t h e  anode, t h e  plasma output increased, b u t  severe anode eros ion  occurred 

near t he  apex of t he  cone. The cathode t i p  was moved by lengthening 

and shortening the  cathode assembly with no s i g n i f i c a n t  change i n  plasma 

output.  

d i f fe rence  t o  plasma output bu t  it d id  influence t h e  onset of tank 

cur ren ts  and a l t e r e d  t h e  gun impedance by about a f a c t o r  of two. 

of  magnetic f i e l d  s t r eng th  e x i s t s  where tank cu r ren t s  are least l i k e l y ;  

a t  gun voltages near 100 V, tank cur ren ts  occur with no ex te rna l  magnetic 

f i e l d ,  they cease when a f i e l d  of 5 kG i s  applied and start  again a t  

higher f i e l d s .  Thermal e f f i c i enc ie s  of 15% are t y p i c a l  and t h e  plasma 

output i s  similar t o  t h a t  from the gun with t h e  3-inch diameter anode. 

Figure 18 shows oscillograms of  the output f o r  comparison with Figure 12. 

The presence of t h e  ex terna l  magnetic f i e l d  made l i t t l e  o r  no 

A range 

The cone angle of  the anode w a s  reduced as i s  shown i n  

Figure 19. A p l o t  of f i e l d  l i n e s  with t h i s  new anode i s  a l s o  shown i n  

Figure 19. Less  anode erosion took place, t he  plasma output increased, 

and a thermal e f f i c i ency  of 23% resu l ted  from t h i s  change. 

shows oscillograms of t he  output from t h i s  gun. 

and gun impedance were similar t o  those with t h e  3-inch diameter anode. 

Further changes ingeometry have been t r i e d .  Neutral gas w a s  

Figure 20 

Again t h e  plasma ve loc i ty  

fed  i n  at  t h e  anode, ins tead  of the mid-point between electrodes,  and 

a concave cathode w a s  used. These changes made no s i g n i f i c a n t  d i f fe rence  

t o  t h e  plasma output. 
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Fina l ly  t h e  plasma output using nitrogen as t h e  propel lan t  

gas w a s  compared with the output when o the r  gases were used. Figure 21 

shows the  d i f f e r e n t  outputs from t h e  ion energy analyzer when hydrogen, 

nitrogen, argon and xenon were used as t h e  propel lan t  gas. 

can t  t h a t  ne i the r  t h e  plasma density nor t h e  ion  energy alters when 

hydrogen, nitrogen o r  argon is used; i n  add i t ion  the plasma output i s  

in sens i t i ve  t o  t h e  pressure  of  the g a s  i n  t h e  gas-feed system. These 

results argue t h a t  t h e  propel lan t  gas does not c o n s t i t u t e  a major f r a c t i o n  

of  the exhaust plasma b u t  a c t s  as a t r igge r ing  mechanism while t he  discharge 

acce le ra t e s  adsorbed gas o r  material from t h e  e lec t rodes .  

t r a n s i t  time and ion energy given by t h e  gridded analyzer a r e  cons is ten t  

w i t h  an  atomic weight of  about 15; t h i s  f a c t  rules out  the p o s s i b i l i t y  

t'nat t h e  exhaust cons i s t s  of electrode material (atomic weight of copper 

i s  64).  

(e.g., nitrogen, oxygen, o r  carbon) from the  r e s idua l  gas i n  t h e  vacuum 

chamber i s  deposited on the  electrodes between shots  and subsequently 

accelerated.  

It i s  s i g n i f i -  

The plasma 

However, it i s  poss ib le  t h a t  material of low atomic number 

-6 The base pressure  i n  the  vacuum tank i s  t y p i c a l l y  2 x 10 

Torr;  i f  t h i s  gas i s  air  then t h e  t i m e  t o  depos i t  one monolayer of 10 15 

2 molecules per  cm i s  one second. The i n t e r v a l  between shots  of four 

seconds i s  long enough f o r  8 x 1017 molecules t o  be deposited on t h e  

anode (area 140 cm ); this  f igu re  i s  comparable with t h e  t o t a l  number of 

i ons  i n  the exhaust ( o f  t he  order 10 

2 

18 
) . 

The exhaust plasma d id  change s i g n i f i c a n t l y  when hydrogen w a s  

subs t i t u t ed  for nitrogen i n  t h e  3-inch gun. 

t o  be c h a r a c t e r i s t i c  of t he  smaller gun. 

determine the  e f f e c t  of adsorbed gas ;  these  include f i r i n g  a t  a faster 

Theabove results appear 

Experiments are i n  progress t o  
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, 

r e p e t i t i o n  rate and redesign of the  gas-feed system t o  allow a higher 

gas flow rate during t h e  discharge. 

5.0 SUMMARY AND DISCUSSION 

The program for the p a s t  year, as i n  t h e  previous t h r e e  

years, has  been d i rec ted  toward understanding t h e  important phys ica l  

phenomena tha t  occur i n  pulsed plasma th rus to r s ,  r a t h e r  than t ry ing  

t o  optimize a p a r t i c u l a r  t h r u s t o r  configuration. 

were chosen t o  give convenient, rapid estimates of t h r u s t o r  performance: 

ca lor imet r ic  e f f i c i ency  has been used as an upper l i m i t  f o r  t h r u s t  

e f f i c i ency  and ion  ve loc i ty  has been a measure of I . Propellant 

u t i l i z a t i o n  s tud ie s  were s t a r t e d  la te  t h i s  year and a t h r u s t  stand 

was b u i l t  so tha t  the propulsion parameters I 

can be measured d i r e c t l y .  

Diagnostic techniques 

SP 

2 '  and ef f ic iency ,  T /2m P, 
SP 

The s i t u a t i o n  of moving cur ren t  sheet acce le ra to r s  with uniform 

mass loading i s  as follows: t h e  propellant i s  e i t h e r  entrained by the 

cu r ren t  sheet o r  driven i n t o  the electrodes;  f o r  p r a c t i c a l  purposes t h e  

snow-plow model i s  adequate t o  describe t h e  dynamics of the cur ren t  

sheet; if the  mass loading and geometry a r e  spec i f ied  a pulse- l ine  

impedance and voltage can be prescribed t o  give a desired cur ren t  sheet 

ve loc i ty ;  t h e  ve loc i ty  of t h e  plasma expelled from t h e  acce le ra to r  i s  

approximately equal t o  the  sheet speed providing t h a t  t he  driving force  

i s  maintained u n t i l  t h e  cur ren t  sheet reaches the end of the electrodes;  

thermal e f f i c i e n c i e s  of the  order of 4@ can be achieved at exhaust 

v e l o c i t i e s  between 2 x 10 and 2 x 10 m/sec. 4 5 
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I n  summary, w e  now know how t o  design and bu i ld  moving cu r ren t  

sheet acce le ra to r s  f o r  any I 

thermal e f f i c i e n c i e s  of t he  order of 4@. 

moving cur ren t  sheet acce le ra to r s  employing a uniform mass loadir,g because 

w e  be l ieve  t h a t  t h e  e f f ic iency  of t h i s  type o f  acce le ra to r  i s  l i m i t e d  

t o  about 50$0 by r ad ia t ion  lo s ses .  

between 2000 and 20,000 seconds with 
SP 

No f u r t h e r  work i s  planned on 

Two ways of  improving the  e f f i c i ency  are being investigated; 

i n  the one a non-uniform mass loading i s  employed i n  order t o  make t h e  

cur ren t  sheet acce le ra t e  continuously and i n  t h e  o the r  t h e  cur ren t  

d i s t r i b u t i o n  i s  s t a t iona ry  or "quasi-stationary". The former requi res  

a fast gas  valve and a high voltage switch i n  order t o  obta in  adequate 

con i rv i  v v e ~  iilc: LiEiiti-Zl ~ G S  d l a t r ~ k n t i ~ c ;  t h z ~ ~  hnvn hen2 2 e v e L ~ y d .  2nd 

measurements are i n  progress.  

The s t a t iona ry  cur ren t  sheet acce le ra to r  o r  Pulsed Arc Gun 

looks promising. 

cur ren t  shee t  acce le ra to r  and these are described i n  t h e  Introduction. 

It has two d i s t i n c t  advantages over s teady-s ta te  th rus tors ;  pulsed a r c  

guns can be operated a t  a very low average power (a  f e w  watts) while a t  

very high peak powers (- megawatts) and because propel lan t  i s  also pulsed, 

very low ambient vacuum tank pressures can be maintained without g igant ic  

pumping systems. 

f ields can only be e f f i c i e n t  at a power l e v e l  of hundreds of kilowatts;  

with a bias f i e l d  t h i s  power l e v e l  can drop t o  t e n s  of  k i lowat t s .  If 

the phys ica l  phenomena ac t ive  i n  D. C. a cce l e ra to r s  can be duplicated 

i n  pulsed systems, then pulsed acce lera tors  can be employed, both i n  t h e  

I n  p r inc ip l e  it has many advantages over t h e  moving 

We be l i eve  t h a t  megnetoplasmadynamic a r c s  without b i a s  
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l abora tory  and i n  space, t o  study the  performance of  M.P.D. a r c s  

without t h e  need for  very high power leve ls .  

TO summarize t h e  preliminary results obtained with pulsed 

a r c  guns: a quas i - s ta t ionary  discharge can be e s t ab l i shed  and plasma 

i s  e j ec t ed  continuously during the  pulse; t h e  energy t o  charge r a t i o  

of  t he  ions i n  t h e  exhaust i s  l e s s  than  the  voltage a t  t h e  terminals 

of  t h e  gun; t h e  plasma ve loc i ty  has been varied over the range 1 t o  5 

cm/psec; a b i a s  f i e l d  improves the symmetry, and reduces the e lec t rode  

erosion bu t  does not al ter the  performance s ign i f i can t ly ;  a thermal 

e f f i c i ency  of 15% i s  t y p i c a l  with the present configuration; tank 

cu r ren t s  are d i f f i c u l t  t o  avoid and when flowing improve t h e  measured 

e f f ic iency .  The n e u t r a l  gas-feed appears t o  be inadequate a t  present;  

i n  some cases t h e  discharge operates on adsorbed gases, a problem similar 

t o  t h e  entrainment problem i n  D. C. devices. 

The development of  the Pulsed Arc Gun is  a s i g n i f i c a n t  con t r i -  

bu t ion  t o  the  f i e l d  of pulsed plasma acce lera tors ,  however, more experi-  

ments are required t o  determine i f  it can be used as a th rus to r .  

One h r t h e r  s ign i f i can t  accomplishment t h i s  year i s  i n  the 

development of energy storage capacitors.  Over one mi l l ion  discharges 

have been achieved a t  energy dens i t i e s  of  80 joules/lb and 4 joules/in.  3 

with a charging voltage a t  4 kV. 

higher than  required f o r  p r a c t i c a l  missions; we are confident t h a t  ne i the r  

capac i tor  weight nor l i f e t i m e  w i l l  be t h e  l i m i t i n g  f a c t o r  i n  the  performance 

of pulsed plasma th rus to r s .  

These energy d e n s i t i e s  are considerably 
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6.0 APPENDICES 

Appendix I. Diagnostics 

1.1 Ion Energy Analyzer 

A simple gridded analyzer which i d e n t i f i e s  t h e  energy of t h e  

ions  i n  t h e  exhaust has been developed. 

analyzer 

I n  con t r a s t  t o  t he  Eubank-type 
6 

which was used previously, t he  new analyzer has much poorer 

reso lu t ion .  I ts  main advantages are compactness, ease o f  o r i en ta -  

t i o n  within t h e  vacuum chamber, and adequate performance a t  t h e  plasma 

d e n s i t i e s  and v e l o c i t i e s  which are encountered i n  our appl ica t ion .  

The analyzer i s  shown i n  Figure 22. The g r i d  behind 

t h e  entrance hole i s  biased s u f f i c i e n t l y  negative, so t h a t  it repe ls  

a l l  t he  electrons,  while t h e  co l lec t ing  p l a t e  behind the  g r i d  i s  given 

a p o s i t i v e  p o t e n t i a l  so that it accepts only those ions whose k i n e t i c  

energy satisfies the  following re la t ionship  

1/2 ~v~ > ZeV 

where V i s  t h e  pos i t i ve  p o t e n t i a l  on the  co l l ec t ing  p l a t e .  

The s i g n a l  from t h e  first g r i d  va r i e s  as t h e  t o t a l  ion cur ren t  

en te r ing  t h e  probe while t he  co l lec tor  cur ren t  i s  propor t iona l  t o  t h e  

cu r ren t  from t h e  f r a c t i o n  of ions which s a t i s f y  Equation (8).  

Two po in t s  about t h e  use of  t h i s  analyzer should be noted. 

F i r s t l y ,  any p o t e n t i a l  difference between t h e  plasma and the  probe w i l l  

produce a plasma sheath which alters t h e  energies of t k e  incoming ions; 

t h i s  e f f e c t ,  which is  common t o  a l l  analyzers, can be appreciable f o r  low 

energ ies  p a r t i c l e s  i f  t he  analyzer i s  too c lose  t o  the  gun. Secondly, 

t h e  mesh s i z e  of t he  g r i d  must be less than t h e  Debye shielding d is tance  

appropr ia te  t o  the  g r i d  voltage and t h e  plasma density.  

44 



0 w 

I 

I 
Q 

(3 

- 
a w 

o 

'1 
a 
0 
l- o 
w 
-J 
J 
0 
0 

cn 
w 
J 
0 

(3 z - e 
=E 
3 e 

CK 
w 
N 
3 a z 
Q: 

[r 
w z 
w 

ci 
LL 

45 



46 



The oscillograms i n  Figure 23 i l l u s t r a t e  t he  performance of 

t h e  analyzer. 

negative g r i d  and t h e  lower t r a c e  i s  the  cur ren t  t o  t h e  p o s i t i v e  

co l l ec to r .  The cur ren t  t o  the  co l l ec to r  reduces progressively as i t s  

p o t e n t i a l  i s  increased. Two marked cu t -of fs  occur which correspond 

t o  $ and lJ++ ions. 

t h e  plasma i s  doubly-ionized i n  t h i s  case. 

I n  each p i c tu re  the upper t r a c e  i s  t h e  cur ren t  t o  t h e  

The oscillograms show t h a t  approximately 7% of 

1.2 Thrust Stand 

A t h r u s t  stand of t h e  inverted-pendulum, four-flexure type 7 

has been i n s t a l l e d  i n  a new vacuum chamber. This vacuum tank, designed 

for t he  stand, i s  four  f e e t  i n  diameter and f i v e  feet long. It connects 

d i r e c t l y  i n t o  the  l a rge  chamber through a 16-inch ga te  valve, allowing 

operation of t h e  s tand  at  gas flow r a t e s  equivalent t o  10 shots per  

second. 

allowing f l e x i b i l i t y  i n  t h e  programming of experiments f o r  t h e  two systems. 

It can be operated independently of t h e  l a rge  chamber, 

A four-flexure system was chosen because t h e  degree of 

c r i t i c a l i t y  of  t h e  ove r -a l l  system i s  independent of t he  c r i t i c a l i t y  

o f  each flexure,  and because it i s  poss ib le  t o  load t h e  stand t o  four  

times t h e  c r i t i c a l  loading before co l lapse .  The f irst  feature means 

that the  loca t ion  of t he  center o f  g r a v i t y  i s  not important; t h i s  f a c t  

g r e a t l y  increases the  v e r s a t i l i t y  and ease of  use, and a l s o  eliminates 

t h e  requirement f o r  c lose ly  matched flexures; t h e  degree of l eve l ing  

required i s  a l s o  reduced. The second f ea tu re  allows operation a t  or 

above the  c r i t i c a l  load, where the mechanical r e s to r ing  forces  are zero, 

and makes t h e  suspension r e l a t i v e l y  in sens i t i ve  t o  mechanical or thermal 

d r i f t s .  

8 
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To eliminate e r r o r s  due t o  hys t e re s i s  of t h e  flexures,  and 

o the r  non-linear e f fec ts ,  it i s  des i rab le  t o  l i m i t  t h e  de f l ec t ion  by 

making t h e  suspension system very s t i f f .  This s t i f f n e s s  i s  achieved 

by an e l e c t r i c a l  feedback network, r a t h e r  than mechanical means. 

The problem of res tor ing  torques from the  e l e c t r i c a l  

connections w a s  avoided by making t h e  base o f  t h e  stand from one-inch 

t h i c k  epoxy board, and carrying the necessary power and e l e c t r i c a l  

s igna l s  through t h e  f lexures .  

a t  a low duty cycle, with the  stand, engine, and capac i tors  ac t ing  as 

a hea t  sink. 

Thermal problems a r e  avoided by operating 

The complete suspended system, including engine and capacitors,  

weighs 150 pounds. 

and .032-inches thick,  machined from 321 stainless steel. 

The f lexures  are 1.5-inches long by .200-inches wide 

A block diagram of the  system i s  shown i n  Figure 24 and a 

photograph i n  Figure 25. 

t o  be induced i n  t h e  d i f f e r e n t i a l  transformer ( a  Sanborn Model FT-1) 

which i s  processed through a c a r r i e r  preamp, then amplified and d i f f e r -  

en t i a t ed .  The d i f f e ren t i a t ed  signal, which i s  proportional t o  t h e  

ve loc i ty  of t h e  stand, i s  sen t  through a D. C. power ampl i f ie r  t o  one 

o f  a p a i r  of c o i l s .  

surround b u t  do not touch a permanent magnet mounted t o  the  movable 

po r t ion  of t he  stand. 

and the  over -a l l  Q of the  system can be var ied  e a s i l y .  The undi f fe r -  

e n t i a t e d  s igna l  i s  amplified and applied t o  t h e  second co i l ,  together 

with a manually applied D. C. voltage, t o  compensate f o r  d r i f t .  

A displacement i n  t h e  stand causes a s i g n a l  

The c o i l s  a re  r i g i d l y  attached t o  t h e  base, and 

This system provides electromechanical damping, 
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The background mechanical noise l e v e l  i s  w e l l  below 0.1 

millipcund, and e l e c t r i c a l  noise due t o  operation of  t he  gun i s  not 

detectable.  

i f  the tank pressure i s  below Torr. No displacement s igna l  i s  

ir_duced when the  gas valve i s  pulsed with no gas i n  t h e  plenum. No 

quan t i t a t ive  measurements o f  t h rus t  have been made so far bu t  t he re  

are indica t ions  t h a t  t h e  suspension i s  s e n s i t i v e  t o  s ing le  pulses.  

No corona has been observed a t  vol tages  up t o  2.5 kV, 

Mass flow rate measurements w i l l  be undertaken as soon 

as all other  por t ions  of t h e  system a r e  operating rout ine ly .  



I .  

' .  

Appendix 11. Energy Storage Capacitors 

About two years ago a capacitor development program was 

i n i t i a t e d  because the  capac i tor  manufacturers would not support an 

extensive R & D program t o  develop a lightweight, compact, low inductance 

capac i tor .  Our program has been successful and has allowed us t o  keep 

pace with the changes and demands of t he  various acce le ra to r s .  

The first u n i t  fabr ica ted  w a s  a 22 pF, 10 kV capacitor 

b u i l t  i n  the form of a torus;  the method of construction employed 

w a s  such t h a t  t h i s  capac i tor  behaved as a pulse- l ine  with an impedance 

of  17 m R and a pulse-time of  0.8 ~ s e c . ~  

have been constructed, with impedances between 4 and 45 m R and pulse- 

times from 0.3 t o  10.0 psec; one of these l i n e s  can de l ive r  10 amps 

with a rise-time of secs in to  a shor t  c i r c u i t  load. 

Since then 12 pulse- l ines  

6 

For t h e  last four  years there has been a steady progression 

toward lower voltage, higher capacitance (or  equiva len t ly  longer pulse- 

t i m e )  energy storage capac i tors  f o r  t he  various acce lera tors .  

example, i n  the f irst  acce lera tor  a 1 pF, 20 kV capac i tor  w a s  used; 

th i s  w a s  followed by a system w i t h  5 pF a t  15 kV, then 10 pF a t  10 kV, 

20 pF a t  6 kV, 180 p F  at  3 kV and f i n a l l y  - 2000 pF a t  500 v o l t s  f o r  

t h e  Pulsed Arc G u n .  To keep abreast  of these  changes w e  have studied 

t h e  p rope r t i e s  o f  d i e l e c t r i c  materials and maintained a t e s t i n g  program 

i n  order t o  design optimum systems over a wide range of  capacitance and 

voltage. 

For 

To minimize cos t s  a l l  t e s t i n g  has been done on small sample 

capac i tors  t y p i c a l l y  5 pF each. U s i n g  Mylar film for the d i e l e c t r i c  
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b w e  have obtained lifetimes of t h e  order of 10 shots  a t  energy 

d e n s i t i e s  of 80 joules / lb  and 4 joules/in? a t  an applied voltage of 

4 kV. 

prototype engine and it i s  apparent now t h a t  n e i t h e r  capac i tor  weight 

nor lifetime w i l l  be t h e  l imi t ing  f ac to r s  i n  t h e  design of  pulsed-plasma 

th rus to r s .  

This energy dens i ty  i s  considerably higher than  necessary for  a 

The Pulsed Arc Gun operates a t  very low voltage, t ypica l ly  

150 vol t s ;  high energy dens i ty  f i lm-fo i l  capac i tors  cannot be fabr ica ted  

a t  these low voltages because the  minimum f i l m  thickness ava i lab le  i s  

0.00015-inch and seve ra l  l a y e r s  have t o  be used t o  avoid pinholes. 

p r inc ip l e  e i t h e r  e l e c t r o l y t i c  o r  ceramic capac i tors  can be used. 

e l e c t r o l y t i c s  do not have adequate r e l i a b i l i t y ,  are lossy, and cannot 

handle t h e  discharge current,  and ceramics would be p roh ib i t i ve ly  expensive 

f o r  laboratory appl ica t ions .  Ceramic caFaciiors coula be i ~ e d  i n  t h e  

f i n a l  system. 

I n  

However, 

The most convenient way t o  f ab r i ca t e  a l ightweight energy 

storage system f o r  t h e  Pulsed Arc Gun i s  t o  use a high impedance, high 

voltage pulse- l ine  and a pulse-transformer. 

Arc G u n  i s  - 30 m s2; therefore,  with a 1O:l transformer a lumped parameter 

l i n e  w i t h  an impedance of 3 sd can be employed. A t y p i c a l  l i n e  cons i s t s  

of  5 capacitors,  each 7 pJ? charged t o  3 kV; t h e  te rmina l  voltage at t h e  

gun f o r  a matched load i s  then 150 vo l t s .  

j ou le s  and weighs 15 lbs,  o f  which 10 are i n  the  transformer. 

and construction of  the pulse-transformer are described i n  the following 

appendix. 

The impedance of t he  Pulsed 

Such a system s t o r e s  158 

The design 
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Appendix I11 Pulse -Transformer Design 

A pulse-transformer has been designed t o  couple the  Pulsed 

Arc Gun t o  i t s  energy storage system. This s tep  i s  necessary because 

t h e  th rus to r  operates  a t  low voltage and because f i l m - f o i l  capaci tors  

cannot be fabricated with good weight e f f i c i ency  a t  vol tages  less than 

2 t o  3 kV. 

Assuming t h a t  the th rus to r  operates  a t  150 v o l t s  and 0.03 

ohms impedance, and t h a t  the  pulse- l ine energy source must be charged 

t o  3 kV ( thus  producing 1.5 kV output i n t o  a matched load) ,  w e  a r r i v e  

immediately at a turns  r a t i o  requirement of lO:l, and a l i n e  impedance 

requirement of 3 ohms. 

t he  pulse-transformer, then the design cons t ra in ts  imposed by our 

We w i l l  d iscuss  f i r s t  the  elementary theory of 

system, and f i n a l l y  the t e s t  r e su l t s  from a laboratory prototype. 

111.1 Theory 

The e l e c t r i c a l  c i r c u i t  being considered here  i s  the  following, 

- 
"' L l  "2vL2 
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where we character ize  the energy source as a zero impedance square-wave 

voltage generator  i n  s e r i e s  with Ro, t he  cha rac t e r i s t i c  l i n e  impedance. 

Here, we def ine the following parameters: 

R 

% = load impedance (assumed r e s i s t i v e )  

n = primary tu rns  

n = secondary tu rns  

L = primary inductance ( f o r  i = 0) 

L = secondary inductance ( i  = 0)  

= pulse- l ine impedance (pure r e s i s t i v e )  
0 

1 

2 

1 2 

2 1 
R = primary resis tance 1 
R = secondary resis tance 2 

k = coupling coef f ic ien t  

* % = mutual inductance referred t o  the primary ( =  KL1) 

n = n /n  = tu rns  r a t i o  1 2  

We first  write the usual voltage re la t ionship  which is, f o r  

= R2 = 0) a pe r fec t  transformer (k  = 1, R 1 

v2 = vl/n . 
Since the  transformer i s  assumed los s l e s s ,  

V i = V i .  1 1  2 2 ’  
hence, 

and 
1’ 

i = n i  2 

* I 

Here, % = nM, if M E k ,,/ L L as i s  the usual  def in i t ion .  1 2’ 
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2 
We thus  define a " ref lec ted"  impedance %' = i, = n R ~ .  (me require- 

A 

ment f o r  a 3 ohm l i n e  now follows from t h e  1O:l t u r n s  r a t i o ,  and R 

0.03 ohm). 

= L 

By similar reasoning, w e  have 

I 2  L2 = n L2 , 
and 

1 2  R2 = n  R 2 

It i s  now convenient t o  draw t h e  "equivalent c i r c u i t "  of t he  

transformer i n  terms of  w h a t  i s  seen a t  t h e  primary terminals; w e  

follow the  procedure of Bostick: 
a 

The add i t iona l  c i r c u i t  elements, e.g., shunt r e s i s t ance  and capacitance 

as shown i n  dashed l i nes ,  a r e  not important a t  t h e  r e l a t i v e l y  low fre- 

quencies w e  employ, and so are neglected. 

core reduces the  core eddy-current loss  t o  a negl ig ib le  l eve l . )  

(Fine lamination of t he  
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One further approximation which i s  qui te  accurate  here i s  

L1 2 that- = n , since both c o i l s  a re  c lose ly  wound on the  same core. 

Then L2 = L1, and the  equivalent c i r c u i t  becomes, taking M = kL1, 
L2 I 

RO 

We are now i n  a posi t ion t o  place Ez-Lts on the transformer 

parameters which are d ic ta ted  by t h e  load impedance %, the voltage V1 

on the primary, and the  duration 7, of the  pulse.  These are :  

r (1) The rise-time T of  the  cur ren t  through RL should be 

much less than T. 

f i s  a number somewhat l a r g e r  than uni ty . )  

We say, a r b i t r a r i l y ,  t h a t  we requi re  T < - 7 , (where r f  

B u t  ( f o r  1 - k << 1) 

2L7 (1-k) 
I 

T =  r R + R1 + R 2 1  + RL I 
0 

Now, s ince e f f i c i e n t  operation requires  t h a t  R and R ' << % I ,  and 

impedance matching requires  that  RL' 

1 2 

Ro, th i s  simplifies t o  a requirement 
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t h a t  

7 =  

RO 
r 

Thus we need good coupling, and L, not 

T < - - ’  
f 

unnecessarily la rge .  

( 2 )  The necesssry size of L however, i s  given by the  1’ 

requirement t h a t  t he  shunt impedance of  kL1 should not d ra in  o f f  an 

important f r a c t i o n  of the input cur ren t  during T. We as soc ia t e  with 

t h i s  cur ren t  d ra in  a rise-time I- 

qui re  a r b i t r a r i l y  t h a t  T~ >> T, o r  s p e c i f i c a l l y  t h a t  

= L1/(Ro+Rl) L1/Ro, and w i l l  re- 
S 

where as before f i s  a number grea te r  than t h e  order of one. 

Combined, these  two cri teria demand t h a t  

f < -  L1 1 ,  
R0-r < 

and i n  pa r t i cu la r ,  t h a t  

? < - .  1 
1 - k  

Here, we find, f o r  example t h a t  f o r  f = 5, w e  must have a coupling 

coe f f i c i en t  of 0.96 o r  b e t t e r .  

and we w i l l  s e t  as a preliminary requirement 

Such a value i s  obtainable, however, 

L = 5R07 1 

(3 )  The core must not s a tu ra t e .  If it does, L drops t o  a 1 

very low value, as does k, and t h e  load i s  immediately decoupled from 

t h e  pulse- l ine .  To derive the c r i t e r i o n  f o r  s a t i s fy ing  t h i s  condition, 
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w e  r e c a l l  from Maxwell's equations t h a t  

J E .  dR = - -  a t  a J B . d A = - '  @ ,  

or, t h a t  

- -  - - -  A AB , 
7 

where A i s  the  c ross -sec t iona l  area o f  t he  core. Obviously, we must 

have 

AB < Bmax (if B = o a t  t = 01, 

and so the  area requirement on the core i s  

v17 
* ' n B  1 max 

The t a s k  o f  the  d e s i g n e r  i s  now t o  reconci le  these  require- 

ments while making the  transformer as l i g h t  and e f f i c i e n t  as possible.  

To study i n  d e t a i l  the  optimization of  transformer design, 

w e  assume t h e  use of a double "C" core, which has t h e  primary wound on 

one l e g  and t h e  secondary on the o ther .  

t o  have i d e n t i c a l  volumes and t o  f i l l  t h e  "window". We f u r t h e r  assume 

t h a t  t h e  core has a square cross sec t ion .  

f i g u r a t i o n  with the  designation of various dimensions by appropriate 

symbols. 

i n  terms of  t h i s  geometry and then t o  attempt t o  a r r i v e  a t  an optimum 

de sign. 

The two windings are assumed 

Figure 26 shows t he  con- 

Our procedure now w i l l  be t o  express t h e  various cons t r a in t s  
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I I 
F i r s t ,  t h e  core area requirement i s  

To minimize weight, w e  make t h i s  an equality,  and so 

Next, there  i s  t h e  compromise time constant requirement t h a t  

L1 = 5 R T. 

sec t iona l  area A and length  A,  

For a non-saturated magnetic c i r c u i t  o f  uniform cross- 
0 

L = p n  2 A  - 
A ’  

where n i s  t h e  t o t a l  number of turns, and IJ. i s  the  e f f e c t i v e  core 

permeability, including t h e  e f f e c t  of gaps. 

cen ter  of t h e  c ross  section, and obta in  

We measure R along t h e  

where 

2 S2 
n 1 2 ( x + y )  + lls = k2 ’ 

I n  estimating efficiency, we neglect core losses ,  and con- 

cen t r a t e  on ohmic winding losses .  

frequencies contemplated i n  our appl ica t ions .  

This i s  a very safe procedure a t  t h e  

If j i s  the  current dens i ty  i n  the  winding, ll t he  average 

o r  spec i f i c  r e s i s t i v i t y  of  the winding, and V 

t h e  power loss i s  

t h e  c o i l  volume, then 
W 

P = j 7 V W  2 . 
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But 

and 

so 

n I  11 j = -  
XY 

Y 

2 vw = yr4xs+nx 3 , 

Efficiency may be defined now as 

e -  RO 
Ro + 2R1 ’ 

s ince  each winding, i r respec t ive  of t u rns  r a t io ,  r e f l e c t s  a s e r i e s  

res i s tance  R i n t o  the  primary terminals.  1 

Thus, 

1 
(3)  

where 

Finally,  the  transformer mass i s  

( 4 )  Me = p c  S 2 [2~+4X+rrS]  2pw Xy[k + n x ]  

where pc  and p 

Now, one may gain an in s igh t  i n t o  requirements f o r  e f f ic iency  

are respect ively the  d e n s i t i e s  of core and c o i l .  
W 

by using Equations (l), and (3)  t o  eli ininate nl; t he  r e s u l t  i s  

1 
E 
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and we obviously wish t o  make t h e  second right-hand t e r m  i n  Equation ( 5 )  

l e s s  than unity.  

f ac to r  1/53 ; t he  r a t i o  S/x w i l l  no t  o rd ina r i ly  cover a wide range 

One not ices  tha t  t h i s  term i s  dominated by t h e  

4 

of values and y i tself  w i l l  be expected t o  remain within c e r t a i n  

reasonable bounds. This i s  t o  argue, then, t h a t  Equation ( 5 )  toge ther  

with k and k determined from externa l  requirements, allows a f a i r l y  

c lose  f irst  estimate of t he  minimum acceptable S. 
1 3 

L e t  us take the 

example of :  

= 15 kilogauss Bmax 
R = 3 ohms 

?l = 3 x 10 
0 

-a ohm -m. ( includes t h e  e f f e c t  of 

winding space f a c t o r )  

These give 

k = 0.15 1 -a 
k = 2 ~ 1 0  , 

3 
f o r  which 

- -  l - 1 +  4.4 x 
€ S4Y 

[% + TT] 

If w e  t ake  t h e  brackets equal t o  10, and the whole second term equal 

t o  un i ty  ( 5 6  ef f ic iency)  w e  obtain 

f o r  y = S, S = 2.1  cm 

f o r  y = 3S, S = 1.7 cm 

f o r  y = lOS, S = 1.3 cm. 



It i s  c l e a r  then, t h a t  the  core l e g  w i l l  probably have t o  be 

more than 2 cm on a side.  

The core volume, however, i s  obtained simply and d i r e c t l y  by 

1; combining Equations (1) and ( 2 )  so as t o  eliminate n 

= k* , k: 
S2C2(X + y) + nS] 

Now, we must guess a t  an e f f e c t i v e  p i n  order t o  obta in  k2; i f  we l e t  

p = 100, then 

k - 2 0 ,  
2 

and Vc % 1.1 x m3, which corresponds t o  a mss of about 9 kG. 

= 17 kilogauss, and T = 100 psec, t h e  core mass If Bmax 
drops t o  a l i t t l e  over 5 kG. 

It i s  in t e re s t ing  t o  note tha t  i f  1~. i s  increased, the core volume 

Vc a l s o  increases according t o  the c r i t e r i a  of Equations (1) and ( 2 ) ,  and 

Equation (6) .  One may see how t h i s  occurs through the  following hy-po- 

t h e t i c a l  sequence of changes. F i r s t ,  suppose t h a t  f o r  a given core 

configuration and winding we increase p. This has t h e  e f f e c t  of 

increasing L 

value, n must be decreased. 

depends only upon B and not p, and so t h e  core cross sec t ion  must be 

increased t o  r e s to re  V T. Impl ic i t  i n  a l l  t h i s  i s  the  assumption t h a t  

and so, i n  order t o  br ing  L1 back t o  i t s  predetermined 1’ 

This  decreases V17, however, s ince  it 1 

max 

1 

t h e  coupling coe f f i c i en t  k remains constant with t h e  change i n  p. I n  
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)L 

f a c t ,  t h e  dependence i s  very c lose  t o  (1-k) - - i f  t h e  core i s  not 

approaching sa tura t ion .  Now, if we note t h a t  

where up t o  now w e  have guessed t h a t  f = 5, bu t  where ac tua l ly ,  as 

shown earlier 

w e  see t h a t  

and so, t h i s  improved approximation s t i l l  requi res  an  increase of V 

with p, although not as rapid.  

C 

One may inquire as t o  the p o s s i b i l i t y  of  going t o  even much 

lower values of p, than 100, perhaps even t o  an a i r  core. 

i s  simply tha t  i n  t h i s  limit, the required c o i l  weight and volume would 

become unacceptable. 

The answer 

An independent benefi t  o f  working a t  moderate p i s  that  a 

core gap which reduces e f f ec t ive  c i r c u i t  p t o  t h e  order of  100 (when 

t h e  a c t u a l  core material may be a hundred times higher) has the e f f e c t  

o f  closing up t h e  core hys te res i s  loop, o r  reducing the  remnant B 

when H has returned t o  zero from an excursion of a s ingle  sign. 

much greater AB i s  ava i lab le  than would be f o r  a gapless core. 

Thus, 

These considerations provide a s t a r t i n g  basis f o r  design o f  an 

opera t iona l  pu lse  transformer. 

so lu t ion  of Equations (1) - (4)  i n  t h e  given var i ab le s  appears t o  be less 

A thorough ana ly t i c  optimizing through 



.l . 

p r a c t i c a l  than a "trimming" procedure which employs as a s t a r t i n g  poin t  

a core configuration se lec ted  by the foregoing approximate means. 

111.2 Experiment 

Preliminary t e s t i n g  of a transformer (Figure 27) wound on 

(an  Arnold AL 1729 A 2 m i l  S i lec t ron  C )  core has been completed, and 

performance has proved qui te  s a t i s f ac to ry .  The core dimensions are: 

S = 3.7 cm, 

x = 3.7 cm, 

y = 7.5 cm. 

n - 100 t u r n s  

n = 10 tu rns  

1 -  

2 

The windings were of  copper f o i l  of 3" width, .0008~' i n  t h e  primary, 

and 0.010" f o r  t h e  secondary. The important d i s t i n c t i o n  between t h i s  

transformer and t h e  assumptions of t h e  foregoing ana lys i s  i s  t h a t  t h e  

windings d id  not f i l l  t he  "window" of t h e  core. 

coupling, h a l f  o f  t h e  primary and h a l f  o f  t h e  secondary were wound on 

I n  order t o  assure  t i g h t  

each leg .  

I n  these  tests, a pulse-line energy source of 3 ohms was 

used. 

and 36 ph inductance, except fo r  f irst  and las t  mesh inductance of  18 ph. 

It was b u i l t  i n  e igh t  sections, each o f  which had 4 pfd capacitance 

The t o t a l  pulse-time was 250 bsec. 

A d m y  load of  0.03 R w a s  used f o r  i n i t i a l  tests.  No 

sa tu ra t ion  of t he  core was noticed f o r  V below 10 3 vol t s ;  t h i s  l imi t ing  
1 

4 value agrees  exac t ly  with an assumed B of 1.7 x 10 gauss. Voltage 

and cur ren t  waveforms are shown i n  Figure 28. 

max 
Energy t r a n s f e r  e f f ic iency ,  

as ca lcu la ted  from voltage and cur ren t  waveforms, was 8qo with t h e  WO 
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l o s s  being e n t i r e l y  a t t r i b u t a b l e  to  the  high secondary r e s i s t ance  of 

- 0.005 0. 

Operation of t h e  transformer i n t o  an a c t u a l  t h r u s t o r  load 

appeared t o  be straightforward i n  that  good pulse waveforms were 

obtained. However, t h i s  p a r t  o f  t he  experiment had d i f f i c u l t i e s  a r i s i n g  

from excessive connection res i s tance  between t h e  transformer and load 

which reduced t h e  energy t r a n s f e r  e f f i c i ency  t o  about 5C$ (Note Fig. 29). 

Breakdown of  t h e  t h r u s t o r  w a s  hard t o  achieve a t  low voltages, although t h i s  

w a s  remedied by the  d i r e c t  capacit ive coupling of a small p a r t  of the 

primary pulse  t o  t h e  t h r u s t o r  t o  achieve a "spark plug" function. 

Figure 29 shows t h r u s t o r  waveforms. The primary voltage and current 

were 750 V and 268 A; t h e  secondary values were 48 V and 1950 A. 

The r e s u l t  o f  some mismatching and I R loss i s  evident here. 2 

It appears that, with ca re fu l  transformer design and c iose  

a t t e n t i o n  t o  secondary c i r c u i t  connections and conductor s izes ,  

e f f i c i e n c i e s  i n  t h e  9@ range should be a t t a inab le .  

continuing. 

This  work i s  
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