103 research outputs found

    The Chemistry of Griseofulvin

    Get PDF

    Aphids acquired symbiotic genes via lateral gene transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aphids possess bacteriocytes, which are cells specifically differentiated to harbour the obligate mutualist <it>Buchnera aphidicola </it>(γ-Proteobacteria). <it>Buchnera </it>has lost many of the genes that appear to be essential for bacterial life. From the bacteriocyte of the pea aphid <it>Acyrthosiphon pisum</it>, we previously identified two clusters of expressed sequence tags that display similarity only to bacterial genes. Southern blot analysis demonstrated that they are encoded in the aphid genome. In this study, in order to assess the possibility of lateral gene transfer, we determined the full-length sequences of these transcripts, and performed detailed structural and phylogenetic analyses. We further examined their expression levels in the bacteriocyte using real-time quantitative RT-PCR.</p> <p>Results</p> <p>Sequence similarity searches demonstrated that these fully sequenced transcripts are significantly similar to the bacterial genes <it>ldcA </it>(product, LD-carboxypeptidase) and <it>rlpA </it>(product, rare lipoprotein A), respectively. <it>Buchnera </it>lacks these genes, whereas many other bacteria, including <it>Escherichia coli</it>, a close relative of <it>Buchnera</it>, possess both <it>ldcA </it>and <it>rlpA</it>. Molecular phylogenetic analysis clearly demonstrated that the aphid <it>ldcA </it>was derived from a rickettsial bacterium closely related to the extant <it>Wolbachia </it>spp. (α-Proteobacteria, Rickettsiales), which are intracellular symbionts of various lineages of arthropods. The evolutionary origin of <it>rlpA </it>was not fully resolved, but it was clearly demonstrated that its double-ψ β-barrel domain is of bacterial origin. Real-time quantitative RT-PCR demonstrated that <it>ldcA </it>and <it>rlpA </it>are expressed 11.6 and 154-fold higher in the bacteriocyte than in the whole body, respectively. LdcA is an enzyme required for recycling murein (peptidoglycan), which is a component of the bacterial cell wall. As <it>Buchnera </it>possesses a cell wall composed of murein but lacks <it>ldcA</it>, a high level of expression of the aphid <it>ldcA </it>in the bacteriocyte may be essential to maintain <it>Buchnera</it>. Although the function of RlpA is not well known, conspicuous up-regulation of the aphid <it>rlpA </it>in the bacteriocyte implies that this gene is also essential for <it>Buchnera</it>.</p> <p>Conclusion</p> <p>In this study, we obtained several lines of evidence indicating that aphids acquired genes from bacteria via lateral gene transfer and that these genes are used to maintain the obligately mutualistic bacterium, <it>Buchnera</it>.</p

    B cell and/or autoantibody deficiency do not prevent neuropsychiatric disease in murine systemic lupus erythematosus

    Get PDF
    Background: Neuropsychiatric lupus (NPSLE) can be one of the earliest clinical manifestations in human lupus. However, its mechanisms are not fully understood. In lupus, a compromised blood-brain barrier may allow for the passage of circulating autoantibodies into the brain, where they can induce neuropsychiatric abnormalities including depression-like behavior and cognitive abnormalities. The purpose of this study was to determine the role of B cells and/or autoantibodies in the pathogenesis of murine NPSLE. Methods: We evaluated neuropsychiatric manifestations, brain pathology, and cytokine expression in constitutively (JhD/MRL/lpr) and conditionally (hCD20-DTA/MRL/lpr, inducible by tamoxifen) B cell-depleted mice as compared to MRL/lpr lupus mice. Results: We found that autoantibody levels were negligible (JhD/MRL/lpr) or significantly reduced (hCD20-DTA/MRL/lpr) in the serum and cerebrospinal fluid, respectively. Nevertheless, both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice showed profound depression-like behavior, which was no different from MRL/lpr mice. Cognitive deficits were also observed in both JhD/MRL/lpr and hCD20-DTA/MRL/lpr mice, similar to those exhibited by MRL/lpr mice. Furthermore, although some differences were dependent on the timing of depletion, central features of NPSLE in the MRL/lpr strain including increased blood-brain barrier permeability, brain cell apoptosis, and upregulated cytokine expression persisted in B cell-deficient and B cell-depleted mice. Conclusions: Our study surprisingly found that B cells and/or autoantibodies are not required for key features of neuropsychiatric disease in murine NPSLE

    The Chemistry of Griseofulvin

    Full text link

    FoxO1 and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol

    No full text
    Abstract Resveratrol, a polyphenol derived from grapes, exerts important effects on glucose and lipid metabolism, yet detailed mechanisms mediating these effects remain unknown. The liver plays a central role in energy homeostasis, and glucokinase (GK) is a key enzyme involved in glucose utilization. Resveratrol activates SIRT1 (sirtuin 1), which promotes deacetylation of the forkhead transcription factor FoxO1. Previously, we reported that FoxO1 can suppress and that HNF-4 can stimulate GK expression in the liver. Here, we examined the role of FoxO1 and HNF-4 in mediating resveratrol effects on liver GK expression. Resveratrol suppressed hepatic GK expression in vivo and in isolated hepatocytes, and knocking down FoxO1 with shRNAs disrupted this effect. Reporter gene, gel shift, supershift assay, and chromatin immunoprecipitation studies show that FoxO1 binds to the GK promoter and that the interplay between FoxO1 and HNF-4 within the GK promoter is essential for mediating the effects of resveratrol. Resveratrol promotes deacetylation of FoxO1 and enhances its recruitment to the FoxO-binding element. Conversely, resveratrol suppresses recruitment of HNF-4 to its binding site, and knockdown of FoxO1 blocks this effect of resveratrol. Coprecipitation and chromatin immunoprecipitation studies show that resveratrol enhances interaction between FoxO1 and HNF-4, reduces binding of HNF-4 to its own site, and promotes its recruitment to the FoxO site in a FoxO1-dependent manner. These results provide the first evidence that resveratrol represses GK expression via FoxO1 and that the interaction between FoxO1 and HNF-4 contributes to these effects of resveratrol

    The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site.

    No full text
    Forkhead in rhabdomyosarcoma (FKHR) is a transcription factor that has been implicated in the control of gene expression by insulin, as well as the regulation of apoptosis by survival factors. These signals trigger the protein kinase B (PKB)-catalysed phosphorylation of FKHR at three residues (Thr(24), Ser(256) and Ser(319)) by a phosphoinositide 3-kinase-dependent pathway that results in the nuclear exit and inactivation of this transcription factor. Here, we have identified a conserved residue (Ser(329)) as a novel in vivo phosphorylation site on FKHR. Ser(329) phosphorylation also decreases the ability of FKHR to stimulate gene transactivation and reduces the proportion of FKHR present in the nucleus. However, unlike the residues targetted by PKB, Ser(329) is phosphorylated in unstimulated HEK-293 cells, and phosphorylation is not increased by stimulation with insulin-like growth factor-1 or by transfection with 3-phosphoinositide-dependent protein kinase-1. We have also purified a protein kinase to near homogeneity from rabbit skeletal muscle that phosphorylates FKHR at Ser(329) specifically and identified it as DYRK1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A). We find that FKHR and DYRK1A co-localize in discrete regions of the nucleus and can be co-immunoprecipitated from cell extracts. These experiments suggest that DYRK1A may phosphorylate FKHR at Ser(329) in vivo
    corecore