639 research outputs found

    Multi-excitons in self-assembled InAs/GaAs quantum dots: A pseudopotential, many-body approach

    Full text link
    We use a many-body, atomistic empirical pseudopotential approach to predict the multi-exciton emission spectrum of a lens shaped InAs/GaAs self-assembled quantum dot. We discuss the effects of (i) The direct Coulomb energies, including the differences of electron and hole wavefunctions, (ii) the exchange Coulomb energies and (iii) correlation energies given by a configuration interaction calculation. Emission from the groundstate of the NN exciton system to the N−1N-1 exciton system involving e0→h0e_0\to h_0 and e1→h1e_1\to h_1 recombinations are discussed. A comparison with a simpler single-band, effective mass approach is presented

    Impact of boundaries on fully connected random geometric networks

    Full text link
    Many complex networks exhibit a percolation transition involving a macroscopic connected component, with universal features largely independent of the microscopic model and the macroscopic domain geometry. In contrast, we show that the transition to full connectivity is strongly influenced by details of the boundary, but observe an alternative form of universality. Our approach correctly distinguishes connectivity properties of networks in domains with equal bulk contributions. It also facilitates system design to promote or avoid full connectivity for diverse geometries in arbitrary dimension.Comment: 6 pages, 3 figure

    Introducing Agility in Hybrid Communication Systems and Sensors

    Get PDF
    This paper presents a new approach in dealing with hybridization issues in communication systems or sensors. The thrust is to separate the logical network (sensor) infrastructure from the physical one. Here we show how we can exploit concepts such as persistent identification which we believe is crucial to be able to connect a variety of heterogeneous devices in a network that grows, and that is robust to failures. A vital characteristic of our architecture is the ability to accommodate a variety of heterogeneous devices and subsystems. Several examples of hybridization of sensors at the physical, logical, and network levels are presented and discussed

    A pseudopotential study of electron-hole excitations in colloidal, free-standing InAs quantum dots

    Full text link
    Excitonic spectra are calculated for free-standing, surface passivated InAs quantum dots using atomic pseudopotentials for the single-particle states and screened Coulomb interactions for the two-body terms. We present an analysis of the single particle states involved in each excitation in terms of their angular momenta and Bloch-wave parentage. We find that (i) in agreement with other pseudopotential studies of CdSe and InP quantum dots, but in contrast to k.p calculations, dot states wavefunction exhibit strong odd-even angular momentum envelope function mixing (e.g. ss with pp) and large valence-conduction coupling. (ii) While the pseudopotential approach produced very good agreement with experiment for free-standing, colloidal CdSe and InP dots, and for self-assembled (GaAs-embedded) InAs dots, here the predicted spectrum does {\em not} agree well with the measured (ensemble average over dot sizes) spectra. (1) Our calculated excitonic gap is larger than the PL measure one, and (2) while the spacing between the lowest excitons is reproduced, the spacings between higher excitons is not fit well. Discrepancy (1) could result from surface states emission. As for (2), agreement is improved when account is taken of the finite size distribution in the experimental data. (iii) We find that the single particle gap scales as R−1.01R^{-1.01} (not R−2R^{-2}), that the screened (unscreened) electron-hole Coulomb interaction scales as R−1.79R^{-1.79} (R−0.7R^{-0.7}), and that the eccitonic gap sclaes as R−0.9R^{-0.9}. These scaling laws are different from those expected from simple models.Comment: 12 postscript figure

    Predicion of charge separation in GaAs/AlAs cylindrical Russian Doll nanostructures

    Full text link
    We have contrasted the quantum confinement of (i) multiple quantum wells of flat GaAs and AlAs layers, i.e. (\GaAs)_{m}/(\AlAs)_n/(\GaAs)_p/(\AlAs)_q, with (ii) ``cylindrical Russian Dolls'' -- an equivalent sequence of wells and barriers arranged as concentric wires. Using a pseudopotential plane-wave calculation, we identified theoretically a set of numbers (m,n,pm,n,p and qq) such that charge separation can exist in ``cylindrical Russian Dolls'': the CBM is localized in the inner GaAs layer, while the VBM is localized in the outer GaAs layer.Comment: latex, 8 page

    Photoluminescence Stokes shift and exciton fine structure in CdTe nanocrystals

    Full text link
    The photoluminescence spectra of spherical CdTe nanocrystals with zincblende structure are studied by size-selective spectroscopic techniques. We observe a resonant Stokes shift of 15 meV when the excitation laser energy is tuned to the red side of the absorption band at 2.236 eV. The experimental data are analyzed within a symmetry-based tight-binding theory of the exciton spectrum, which is first shown to account for the size dependence of the fundamental gap reported previously in the literature. The theoretical Stokes shift presented as a function of the gap shows a good agreement with the experimental data, indicating that the measured Stokes shift indeed arises from the electron-hole exchange interaction.Comment: 8 pages, 4 figures, LaTe

    Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling

    Get PDF
    Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake

    Arabidopsis BRUTUS-LIKE E3 ligases negatively regulate iron uptake by targeting transcription factor FIT for recycling

    Get PDF
    Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake
    • …
    corecore