48 research outputs found

    A gene expression atlas for different kinds of stress in the mouse brain

    Get PDF
    Stressful experiences are part of everyday life and animals have evolved physiological and behavioral responses aimed at coping with stress and maintaining homeostasis. However, repeated or intense stress can induce maladaptive reactions leading to behavioral disorders. Adaptations in the brain, mediated by changes in gene expression, have a crucial role in the stress response. Recent years have seen a tremendous increase in studies on the transcriptional effects of stress. The input raw data are freely available from public repositories and represent a wealth of information for further global and integrative retrospective analyses. We downloaded from the Sequence Read Archive 751 samples (SRA-experiments), from 18 independent BioProjects studying the effects of different stressors on the brain transcriptome in mice. We performed a massive bioinformatics re-analysis applying a single, standardized pipeline for computing differential gene expression. This data mining allowed the identification of novel candidate stress-related genes and specific signatures associated with different stress conditions. The large amount of computational results produced was systematized in the interactive “Stress Mice Portal”

    HPC-REDItools: A novel HPC-aware tool for improved large scale RNA-editing analysis

    Get PDF
    Background: RNA editing is a widespread co-/post-transcriptional mechanism that alters primary RNA sequences through the modification of specific nucleotides and it can increase both the transcriptome and proteome diversity. The automatic detection of RNA-editing from RNA-seq data is computational intensive and limited to small data sets, thus preventing a reliable genome-wide characterisation of such process. Results: In this work we introduce HPC-REDItools, an upgraded tool for accurate RNA-editing events discovery from large dataset repositories. Availability: https://github.com/BioinfoUNIBA/REDItools2. Conclusions: HPC-REDItools is dramatically faster than the previous version, REDItools, enabling big-data analysis by means of a MPI-based implementation and scaling almost linearly with the number of available cores

    CoVaCS : a consensus variant calling system

    Get PDF
    Background: The advent and ongoing development of next generation sequencing technologies (NGS) has led to a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and precision medicine. The body of genome resequencing data is progressively increasing underlining the need for accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of candidate causal mutations in diagnostic screens. Results: Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our system exhibits better sensitivity and higher specificity than equivalent commercial software. Conclusions: CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs

    PeachVar-DB : Curated Collection of Genetic Variations for the Interactive Analysis of Peach Genome Data

    Get PDF
    Applying next-generation sequencing (NGS) technologies to species of agricultural interest has the potential to accelerate the understanding and exploration of genetic resources. The storage, availability and maintenance of huge quantities of NGS-generated data remains a major challenge. The PeachVar-DB portal, available at http://hpc-bioinformatics.cineca.it/peach, is an open-source catalog of genetic variants present in peach (Prunus persica L. Batsch) and wild-related species of Prunus genera, annotated from 146 samples publicly released on the Sequence Read Archive (SRA). We designed a user-friendly web-based interface of the database, providing search tools to retrieve single nucleotide polymorphism (SNP) and InDel variants, along with useful statistics and information. PeachVar-DB results are linked to the Genome Database for Rosaceae (GDR) and the Phytozome database to allow easy access to other external useful plant-oriented resources. In order to extend the genetic diversity covered by the PeachVar-DB further, and to allow increasingly powerful comparative analysis, we will progressively integrate newly released data

    NF-κB: a new player in angiostatic therapy

    Get PDF
    Angiogenesis is considered a promising target in the treatment of cancer. Most of the angiogenesis inhibitors in late-stage clinical testing or approved for the treatment of cancer act indirectly on endothelial cells. They either neutralize angiogenic growth factors from the circulation or block the signaling pathways activated by these growth factors. Another group of angiogenesis inhibitors are the direct angiostatic compounds. These agents have a direct effect on the endothelium, affecting cellular regulatory pathways, independently of the tumor cells. The reason that this category of agents is lagging behind regarding their translation to the clinic may be the lack of sufficient knowledge on the mechanism of action of these compounds. The transcription factor NF-κB has been recently connected with multiple aspects of angiogenesis. In addition, several recent studies report that angiogenesis inhibition is associated to NF-κB activation. This is of special interest since in tumor cells NF-κB activation has been associated to inhibition of apoptosis and currently novel treatment strategies are being developed based on inhibition of NF-κB. The paradigm that systemic NF-κB inhibition can serve as an anti-cancer strategy, therefore, might need to be re-evaluated. Based on recent data, it might be speculated that NF-κB activation, when performed specifically in endothelial cells, could be an efficient strategy for the treatment of cancer

    The Wikipedia Bitaxonomy Explorer

    No full text
    We present WiBi Explorer, a new Web application developed in our laboratory for visualizing and exploring the bitaxonomy of Wikipedia, that is, a taxonomy over Wikipedia articles aligned to a taxonomy over Wikipedia categories. The application also enables users to explore and convert the taxonomic information into RDF format. The system is publicly accessible at wibitaxonomy.org and all the data is freely downloadable and released under a CC BY-NC-SA 3.0 license
    corecore