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Abstract

Background: The advent and ongoing development of next generation sequencing technologies (NGS) has led to
a rapid increase in the rate of human genome re-sequencing data, paving the way for personalized genomics and
precision medicine. The body of genome resequencing data is progressively increasing underlining the need for
accurate and time-effective bioinformatics systems for genotyping - a crucial prerequisite for identification of
candidate causal mutations in diagnostic screens.

Results: Here we present CoVaCS, a fully automated, highly accurate system with a web based graphical interface
for genotyping and variant annotation. Extensive tests on a gold standard benchmark data-set -the NA12878 Illumina
platinum genome- confirm that call-sets based on our consensus strategy are completely in line with those attained by
similar command line based approaches, and far more accurate than call-sets from any individual tool. Importantly our
system exhibits better sensitivity and higher specificity than equivalent commercial software.

Conclusions: CoVaCS offers optimized pipelines integrating state of the art tools for variant calling and annotation for
whole genome sequencing (WGS), whole-exome sequencing (WES) and target-gene sequencing (TGS) data. The
system is currently hosted at Cineca, and offers the speed of a HPC computing facility, a crucial consideration when
large numbers of samples must be analysed. Importantly, all the analyses are performed automatically allowing high
reproducibility of the results. As such, we believe that CoVaCS can be a valuable tool for the analysis of human
genome resequencing studies. CoVaCS is available at: https://bioinformatics.cineca.it/covacs.

Keywords: Variant calling, Web server, Workflow, Consensus method, Graphical user interface, Variant annotation,
Variant prioritization

Background
The increasing throughput and reduction in costs associ-
ated with Next Generation Sequencing technologies
(NGS) is driving personalized genomics and predictive
medicine [1–3]. National Health agencies and institutions
worldwide are currently undertaking ambitious sequen-
cing projects, aimed to determine the genotypes of tens or
even hundreds of thousands of individuals [4–7], to assist
in the development of diagnostic approaches and clinical
screening programs. The widespread application of such
technologies promises major advances in medical science.
While the ability to sequence an unprecedented num-

ber of human genomes could serve as the basis for a

new revolution in medical science and genetics, the need
to handle, analyze and store huge amounts of data is
posing major challenges to genomics and bioinformatics,
which at present, remain largely unresolved [8]. A pre-
sumably incomplete catalog of NGS sequencing plat-
forms (http://omicsmaps.com/) suggests that 2200 NGS
instruments are distributed, worldwide. in 1027 sequen-
cing facilities across 62 countries. A conservative esti-
mate based on these numbers suggests that, if used at
full capacity, these NGS platforms could generate in the
excess of 35 petabases of sequencing data per year [9],
while, worldwide, sequencing capacity could be expected
to reach zettabases in the next ten years, corresponding
to 100 million to 2 billions complete human genome
sequences by 2027.
While bioinformatics approaches for the analysis and

storage of contemporary sequence data have evolved in
parallel with the sequencing technologies themselves,
the construction of dedicated pipelines to call sequence
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variants from different types of data (gene panels, exomes,
or whole genomes) and from distinct sequencing tech-
nologies, can be technically challenging [10] and typically
requires intervention by dedicated bioinformaticians
[11, 12]. Furthermore different combinations of tools
can yield widely differing results from the same data,
complicating direct comparisons [13] and posing a major
challenge for the integration of such data into curated da-
tabases of human genetic variation [14, 15]. Recent stud-
ies, indicating that consensus call-set approaches from
different methods are generally more robust and accurate
than genotyping strategies based on individual tools
(e.g. [16]), also imply a substantial increase in required
computational and technical resources. Moreover, strat-
egies based on the combination of different tools result
in a rather complex workflow, which can be difficult to
implement and optimize, especially for users with a
limited bioinformatics background.
In this paper, we present CoVaCS (Consensus Variant

Calling System), a fully automated system for genotyping
and variant annotation of resequencing data produced
by second generation NGS technologies. CoVaCS offers
state of the art tools for variant calling and annotation
along with an expert made pipeline for the analysis of
whole genome shotgun (WGS), whole exome sequencing
(WES) and targeted resequencing data (TGS), performing
all steps from quality trimming of the sequencing data to
variant annotation and visualization. The final set of vari-
ants is obtained by forming a consensus call-set (2 out of
3 rule) from three different algorithms based on comple-
mentary approaches: Varscan, [17] which adopts a series
of stringent quality metrics in order to identify putative
false positive predictions, GATK, [18, 19] which performs
local reassembly of the reads to mitigate sequence errors
and reconstruct haplotypes and Freebayes [20] which is
based on a probabilistic haplotype reconstruction algo-
rithm. Extensive tests on a golden standard benchmark
based on the NA12878 Illumina platinum genome, con-
firm that call-sets based on our consensus strategy are
completely in line with those attained by similar command
line based approaches [21], and far more accurate than
call-sets from any individual tool. Importantly our sys-
tem exhibits better sensitivity and higher specificity than
equivalent commercial software.
CoVaCS is available through a user-friendly web inter-

face at: https://bioinformatics.cineca.it/covacs and is cur-
rently hosted at Cineca (http://www.hpc.cineca.it/content/
about-us) on the Pico infrastructure - an Intel Cluster of
74 nodes built for large-scale analysis - and benefits from
all the advantages of High Performance computing (HPC).

Implementation
CoVaCS is currently hosted at PICO: a High Perform-
ance Data Analytics Linux Cluster with 80 Intel

NeXtScale nodes, integrated within a multi tier storage
system, configured with 50 TBytes of SSD memory, 5
PBytes of High IOPS storage and tens of PBytes of long
term archiving library.

Web Interface
The web interface is based on the Foundation front-end
framework v. 5.0 and Javascript/jQuery. Server-side, the
system is served by the Apache HTTP Server v. 2.4.6 on
CentOS and is based on several in-house PHP v. 5.4
scripts for the management of complex data and results.
Data are stored in a MySQL DBMS v. 5.5. Variant detec-
tion, consensus call-set assessment and functional anno-
tation is carried out by state of the art tools as detailed
in Additional file 1.
CoVaCS accommodates all major commercial exome

sequencing kits (Illumina, Agilent or Nimblegen) and
includes a collection of the most recent assemblies for
human, mouse and cow genomes with corresponding
annotations.

Tools incorporated in CoVaCS
Trimmomatic [22] (version 0.33) is used for initial qual-
ity trimming of the reads. Quality reports of pre- and
post-trimming data are generated by the means of the
Fastqc [23] program. Reads can be aligned to reference
genomes by Bowtie2 [24] or bwa [25]- Sorting and com-
pression of alignment files is performed with SAMtools
[26] utilities.
PCR duplicate removal is performed using the Mark-

Duplicates utility from the Picard [27] tool suite (version
1.119).
Varscan [17], the GATK [18] best practice pipeline,

[19] employing the HaplotypeCaller and Freebayes [20]
are used for variant calling.
Integration of call-sets is performed by the means of a

custom script in combination with the CGES [21] con-
sensus genotyper.
Functional annotation for the prediction of causative

mutations is performed using Annovar [28] and a collec-
tion of databases and publicly available resources of hu-
man genetic variation, including dbSNP [29], Omim
[30], Cosmic [31] and Clinvar [32] among others.
A detailed description of the implementation of the

pipeline and incorporated custom utilities is reported in
Additional file 1.
Vcf files for CGES were generated using Freebayes

[20], GATK [19], Atlas SNP2 [33] and SAMtools [26]
with the same parameters as specified in the supplemen-
tary materials of Trubetskoy et al.

Results
CoVaCS consists of a powerful and user friendly web
interface providing access to computational resources
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and state of the art tools and pipelines for the analysis of
genome re-sequencing data. The system, currently incor-
porates different assembly versions and a collection of
annotations for the human (hg18, hg19, hg38), mouse
(mm9, mm10), and cow (bostau7, bostau8) genomes, as
well as a collection of meta-data for the major commer-
cial exome kits by Illumina, Agilent and Nimblegen.
Custom targeted resequencing panels can be analyzed by
simply uploading a file in bed format, specifying the co-
ordinates of targeted regions. Pipelines for joint- (jsp)
and single-sample (ssp) variant calling are provided,
allowing the analysis of both large or limited cohorts of
samples. Both pipelines are composed of 8 steps and
accept either fastq files or alignment files in bam format
as their main input. When a bam file is provided, the
alignment indicated in the bam file is used in the subse-
quent stages of the analysis. A schematic is presented in
Figs. 1a for ssp. and 1B for jsp. An extended description
of the computational steps and parameters is provided
in Additional file 1.
Accurate genotyping is achieved through the combin-

ation of three variant calling algorithms: GATK haplotype
caller [18, 19] Varscan2 [17] and Freebayes [20].
The final call-set is a simple majority rule (2 out of 3

tools) consensus from the individual call-sets, while low
confidence calls (specific to one tool) are reported as a
separate call-set.

The main output consists of a detailed HTML report,
containing the predicted variants, along with their func-
tional annotation against a large collection of publicly
available resources and databases, including dbSNP [29],
Omim [30], Cosmic [31] and Clinvar [32]. Dynamic filters
can be used to sort results and prioritize candidate causal
variants. Various output formats (vcf, xls, csv, txt) can be
generated and all intermediate files - including call-sets ob-
tained by each variant calling algorithm - are available for
download. UCSC genome browser track files are included
in the final output to facilitate visualization of results.

Data input, control management and variant filtration
Submission to CoVaCS requires a structured description
of the experimental design of a project through the cre-
ation of a “study”. Studies are high level containers for se-
quencing data and meta-data- including sample labels,
experimental conditions, biological replicates. There is no
limitation on the number of samples and files that can be
incorporated into a study. and users are guided in the
process of study creation and population through a series
of HTML forms.
CoVaCS accepts the most common file formats for

sequencing (fastq) and alignment (bam/sam) data.
Compressed files and archives (sra, zip, gz, tar) are also
supported. Files can be uploaded directly through the
web interface (if smaller than 2Gb), or by the means of

Fig. 1 Schematic of the variant calling pipelines implemented in CoVaCS: Single steps of the pipelines are indicated by capital letters: A to G. Tools are
indicated in yellow boxes. a Single sample variant calling, b Joint sample variant calling
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ftp, dropbox or weblink. Prior to the submission of an
analysis, a reference genome and exome capture kits or
a manifest file containing chromosome coordinates in
bed format (where appropriate) can be selected from a
drop-down menu.
The execution of the workflows is controlled through

a dedicated “monitor” application which allows the re-
trieval of intermediate output files and status checks on
submitted jobs. Upon completion, an email provides the
user with links to the final output, which consists of a
dynamic html report with the complete list of variants
and their functional annotations, including the class of
the variants (SNV/INDEL), gene names and genomic co-
ordinates, genotypes and, where available, accession num-
bers from a collection of repositories of genetic variation,
such as dbSNP, ExAC and 1000 genomes [6, 7, 29]. Com-
prehensive report files also contain detailed information
concerning the execution of each step, read qualities and
mapping, as well as statistics regarding predicted variants.
Several filters can be applied to the final results in

order to facilitate variant prioritization and the identifi-
cation of potentially causative mutations. Filtering cri-
teria can be specified through a user-friendly interface
by selecting the appropriate filters from a drop-down
menu.
For example, the “Functional class” column allows

users to filter variants according to their functional class
as defined by Annovar. The “NM” column, which re-
ports the number of methods supporting each variant
can be used to filter variants called by particular combi-
nations of variant calling methods. Variants can also be
filtered according to their MAF (minor allele frequency),
as estimated from 1000G project [6], or based on their
class (SNVs or indels), or their presence or absence in
databases of human genetic variation, such as dbSNP.
Moreover, users may select variants falling within par-
ticular genes or genomic regions, which can facilitate
the analysis of disease causing mutations in monogenic
disorders. Results, filtered according to the specified cri-
teria, are available for download in different formats
(simple text and excel xlsx).

Evaluation of CoVaCS variant calling pipeline
In order to evaluate the accuracy and the sensitivity of
the pipelines incorporated into CoVaCS, we have taken
advantage of a set of publicly available exome (WES)
and genome (WGS) resequencing data, derived from the
Platinum genome NA12878 [34], to compare results
attained by our tool with the proprietary Illumina VCAT2
software, and CGES (Consensus Genotyper for Exome Se-
quencing) [21], a similar variant calling workflow based
on a consensus strategy. Accuracy estimates were derived
for each tool by comparing the complete set of predictions
with genetic variants as indicated in the reference vcf for

the NA12878 platinum-genome. Consistency of the calls
was evaluated at genotype level. Only calls showing
complete agreement with the validation set were consid-
ered correct.
The core of the CGES package consists of a collection

of command line utilities for the harmonization of VCF
files, obtained by the means of different variant calling
algorithms. Consensus genotypes are obtained by apply-
ing a two-stage voting scheme based on user defined
cut-offs values. In the first step only variants that are de-
tected by a minimum number of tools are selected. Sub-
sequently a genotype concordance threshold is applied
and inconsistent genotype calls that are not supported
by a minimum number of algorithms are marked as dis-
cordant. The final call-set consists of a collection of high
quality variants that show consistent genotype calls ac-
cording to the required number of algorithms.
Although in principle the tool could be applied to any

combination of vcf files, authors of CGES have developed
their own variant calling pipeline based on the integration
of 4 popular variant calling algorithms: GATKv2.8,
SAMtools, Altas-SNP2 and FreeBayes. According to the
authors, best results in terms of specificity for CGES
are achieved when strict consensus of all calls (4
methods) is applied. Parameters for the optimization of
the suggested variant calling algorithms with CGES are
also provided.
WES data analyzed in the course of the current evalu-

ation derive from a pilot study performed by Illumina in
order to demonstrate the accuracy and sensitivity of com-
mercial VCAT2 variant calling system. The data were pro-
duced with the Nextera Rapid Capture exome kit (https://
blog.basespace.illumina.com/2015/01/14/variant-calling-as
sessment-using-platinum-genomes-nist-genome-in-a-bot-
tle-and-vcat-2-0/), and provide sets of different levels of
exome coverage: 50X, 100X, 220X and 400X to allow tests
of coverage on the accuracy and sensitivity of genotyping.
All the original sequencing data, as well as the final vcf are
publicly available on the Illumina basespace portal
(https://basespace.illumina.com/s/JU28qsbkN1vS).
In the present work the 50X, 100X and 220X pooled

coverage sets were analysed with CoVaCS, using the de-
fault parameters and the bwa aligner. The CGES pipeline
was executed, using its default parameters, on the same
alignment files generated by bwa in order to facilitate
direct comparison of the results. Both a strict consensus
based on concordance of all the 4 methods and a less
stringent consensus requiring the support of at least 2
out of the 4 methods were produced.
Results in terms of sensitivity and specificity (wrt the

platinum genome call-set obtained from https://cloud.
google.com/genomics/data/platinum-genomes) are reported
in Fig. 2 and Additional file 2: Table S1 and suggest that,
as expected, methods combining the predictions of
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different variant calling algorithms, such as CoVaCS
and CGES achieve a substantially higher sensitivity and
specificity than any of Varscan, GATK or Freebayes
taken individually, confirming that CoVaCS provides a
highly accurate pipeline for the genotyping of WES data.
These considerations apply also for the Illumina VCAT2
software which attains a lower sensitivity, with respect to
the consensus methods, both for SNVs and indels. Unsur-
prisingly, in the light of the similar approaches (and selec-
tion of tools) underlying the two workflows, results
attained by CoVaCS and CGES on this data-set are

substantially equivalent, and differ only by a limited num-
ber of calls. However, we notice that for CGES, the call-set
based on the strict consensus achieves a somewhat lower
sensitivity than the equivalent set based on a 2 out 4 rule,
without showing any particular improvement of the speci-
ficity. In our hands, CoVaCS displays a marginal, but sys-
tematic increase in sensitivity with respect to both the
CGES call-sets. This observation is particularly evident
when the “low coverage” 50X set is considered.
High coverage PCR free whole genome sequencing data

for the NA12878 platinum genome were downloaded

Fig. 2 Comparison of variant calling algorithms on WES data. Sensitivity and specificity, at varying levels of coverage, of variant detection algorithms
used in the course of the present study, in the analysis of the golden standard WES benchmark based on the NA12878 platinum genome
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from http://www.ebi.ac.uk/ena/data/view/PRJEB3381
(50×) and http://www.ebi.ac.uk/ena/data/view/PRJEB3246
(200×).Data were subjected to the CoVaCS single-sample
variant calling pipeline. As for WES data, the CGES pipe-
line was executed on the same alignment files and 2
equivalent consensus call-sets (4 out of 4 and 2 out of 4
rules) were obtained also for the WGS analysis. Results in
terms of specificity and sensitivity were evaluated consid-
ering only genomic regions encompassed by at least 10
uniquely mapped reads (88% of the genome for 50× and
96% for 200×).

Consistent with previous observations, CGES and
CoVaCS attain a higher sensitivity and specificity than
call-sets based on single tools (Fig. 3 and Additional file 2:
Table S2). As expected, the 2 also tools attained equivalent
results also on this data-set, with a minimal difference in
the total number of correct calls. We notice, however, that
also in this case CoVaCS displays the same specificity and
a marginal increase in sensitivity with respect to both
CGES call-sets. Consistent with previous observations, the
difference is more marked when the strict consensus set is
considered. Importantly, and again in line with previous

Fig. 3 Comparison of variant calling algorithms on WGS data. Sensitivity and specificity, at high (200X) and low (50X) levels of coverage, of variant
detection algorithms used in the present study, for the analysis of the golden standard WGS benchmark based on the NA12878 platinum genome
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observations, the increase in sensitivity is more evident for
the low coverage set, suggesting a recurrent pattern.
In order to investigate this scenario, we decided to

compare predictions by CGES and CoVaCS on shallow
coverage regions, that were encompassed by less than 30
uniquely mapped reads. Direct comparison of the pre-
dictions with the golden standard benchmark (Fig. 4 and
Additional file 2: Table S3), again highlight a more rele-
vant difference in specificity between CGES and CoVaCS
when only low coverage regions are considered. This ob-
servation applies both for WES and WGS data.
Since the 2 workflows are based on a similar selection

of tools, which are however executed using different pa-
rameters, we speculate that this difference is probably
related to the usage of more stringent parameters for
variant calling in the CGES pipeline.
Interestingly, we observe that the call-set for exome

target regions obtained from whole genome data is more
accurate than the equivalent set derived from exome
data, even at lower nominal coverage levels, consistent
with the findings of [35]. The higher accuracy is probably

related to a more uniform coverage profile (Additional
file 2: Table S4 and Additional file 3: Figure S1), as we
observe a considerable reduction in coverage of GC
rich regions in the WES data.
Evaluation of the pipeline on non human data (see

Additional file 1) confirm our observations and suggest
that the pipeline implemented in CoVaCS can be also be
applied to the analysis of non human model systems
(Additional file 2: Table S5).

Comparison of the variant calling algorithms
incorporated in CoVaCS
Interesting patterns, often corresponding to previous
suggestions [36], emerge from the analysis of false posi-
tive and false negative calls recovered (or missed) by the
variant calling algorithms incorporated in CoVaCS. For
GATK, we observe a tendency to over predict variants
that were incorporated in the original training set (8% of
the false positive calls fall in this class), however since
this tool adopts a set of variant filtering criteria that are
not solely driven by coverage, GATK recovers a better

Fig. 4 Comparison of variant calling CGES and CoVaCS on regions of low coverage. Comparison of accuracy and specificity levels achieved by
the CoVaCS and CGES on genomic regions encompassed by less than 30 uniquely mapping reads, for the WES (A) and WGS (B) data
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sensitivity than Freebayes or Varscan in low coverage re-
gions (Additional file 2: Table S1), especially in the de-
tection of heterozygous variants. Freebayes shows the
best overall performance among all the tools used in our
experimental setup. However, we observe a reduction in
sensitivity for this method in low coverage regions and
especially in the detection of heterozygous variants. This
is particularly apparent for the WES data-set (Additional
file 2: Table S2) due to both the lower uniformity in
coverage and to the so called “reference capture bias”,
where capture probes tend to preferentially enrich refer-
ence alleles at heterozygous loci. Among the tools used
in CoVaCS, Varscan shows the highest specificity at the
cost of a slight decrease in sensitivity. As for Freebayes
low coverage is the main factor affecting the specificity
of Varscan. Importantly, we notice that the false positive
rate remains relatively low for all the call-sets produced
in the course of this study. The majority of these false
positives are likely to derive from erroneous mapping of
the reads or errors in the reference genome assembly ra-
ther than flaws in the variant calling algorithms. Indeed,
consistent with Zook et al., 2014 [37], we observe that a
notable proportion of the reads (21%) from which such er-
roneous calls originate correspond to genomic regions of
low mappability (average mappability below 0.25 accord-
ing to the GEM tool [38]) or map to different genomic lo-
cations on hg19 and hg38 reference genomes (37%).

Conclusions
Comparative analyses based on publicly available WES
and WGS sequencing data for the golden standard plat-
inum genome NA12878, show that the CoVaCS consen-
sus calls for WES targeted resequencing data are slightly
more sensitive and notably more specific than those gen-
erated with the Illumina VCAT 2.0 software or those gen-
erated by the means of any individual predictors. Detailed
comparisons with a similar workflow based on a consen-
sus strategy, CGES, show that performances attained by
CoVaCS are completely in line with those attained by
equivalent methods, with a marginal but systematic in-
crease in sensitivity in regions of shallow coverage.
CoVaCS is accessible through a dedicated, user-friendly

web interface and no configuration or installation is re-
quired. All steps, from quality trimming to variant an-
notation can be performed, for both single- and joint-
samples by non-specialists.
The system is currently hosted at Cineca and offers the

speed of a HPC computing facility, a crucial consideration
when large numbers of samples must be analysed.
CoVaCS is freely available to all Cineca Users, while

Members of European research institutions can obtain
full access to CoVaCS by applying through e ELIXIR-IIB
(Italian Infrastructure for Bioinformatics, http://elixir-
italy.org/). The system is under constant development

and new reference genomes, databases and bioinfor-
matics tools are frequently added to it. Importantly, all
the analyses are performed automatically allowing high
reproducibility of the results. As such, we believe that
CoVaCS can be a valuable tool for the analysis of hu-
man genome resequencing studies.
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