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Abstract

Background: We develop medical-specialty specific ontologies that contain the settled science and common
term usage. We leverage current practices in information and relationship extraction to streamline the ontology
development process. Our system combines different text types with information and relationship extraction
techniques in a low overhead modifiable system. Our SEmi-Automated ontology Maintenance (SEAM) system
features a natural language processing pipeline for information extraction. Synonym and hierarchical groups are
identified using corpus-based semantics and lexico-syntactic patterns. The semantic vectors we use are term
frequency by inverse document frequency and context vectors.
Clinical documents contain the terms we want in an ontology. They also contain idiosyncratic usage and are
unlikely to contain the linguistic constructs associated with synonym and hierarchy identification. By including
both clinical and biomedical texts, SEAM can recommend terms from those appearing in both document types.
The set of recommended terms is then used to filter the synonyms and hierarchical relationships extracted from
the biomedical corpus.
We demonstrate the generality of the system across three use cases: ontologies for acute changes in mental status,
Medically Unexplained Syndromes, and echocardiogram summary statements.

Results: Across the three uses cases, we held the number of recommended terms relatively constant by changing
SEAM’s parameters. Experts seem to find more than 300 recommended terms to be overwhelming. The approval
rate of recommended terms increased as the number and specificity of clinical documents in the corpus increased.
It was 60% when there were 199 clinical documents that were not specific to the ontology domain and 90% when
there were 2879 documents very specific to the target domain.
We found that fewer than 100 recommended synonym groups were also preferred. Approval rates for synonym
recommendations remained low varying from 43% to 25% as the number of journal articles increased from 19 to
47. Overall the number of recommended hierarchical relationships was very low although approval was good. It
varied between 67% and 31%.

Conclusion: SEAM produced a concise list of recommended clinical terms, synonyms and hierarchical relationships
regardless of medical domain.
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Introduction
We created an ontology development system, SEmi-Au-
tomated ontology Maintenance (SEAM) that leverages
current practices in information and relationship extrac-
tion from text to streamline the process of generating
knowledge structures. The knowledge structures that inter-
est us are medical specialty-specific ontologies. We will use
these ontologies for machine assisted clinical diagnostic de-
cision support (CDS). CDS requires knowledge structures
representing diagnostic criteria, a method for gathering pa-
tient information and the ability to reconcile the gathered
patient information with the diagnostic knowledge struc-
tures. These requirements stem from diagnostic decision-
making, which requires knowing at least two things: 1) the
criteria for a diagnosis and 2) if this particular patient
meets those criteria. The goal of the SEAM system is to fa-
cilitate the information acquisition necessary to construct
ontologies that represent the settled science and common
term usage with respect to either medical specialty or par-
ticular disease.

Background
Our current approach to building diagnostic knowledge
structures is to construct an application ontology of a spe-
cific disease or medical specialty. Here application ontol-
ogy is used to differentiate them from domain ontologies
like the one described in [1]. Ontology is an arrangement
for defining concepts, the relationships between them,
and rules relating to the combining of concepts and rela-
tions [2]. Conceptsa are roughly the “ideas” to which
words refer (i.e. what the words “mean”), which is also
called semantics. Concepts are often thought of as groups
of semantically equivalent terms (e.g. heart attack, myo-
cardial infarction, MI). These equivalences allow an auto-
matic system to map terms used in one setting on to
those used in another. Relationships between the terms
are required because people often use terms that are
semantically related, but not semantically equivalent, to
represent the same idea. For instance, a clinician may in
some situations refer interchangeably to bowels and intes-
tines. For a machine to interpret these references, it must
have a representation of the relationship between bowels
and intestines. Rules are used to further refine when it is
appropriate to invoke a relationship. Ontologies have
been successfully used to identify semantic equivalence
for database integration, text classification, translation,
and other natural language tasks [3-8]. In our work
ontology is a semantic stepping-stone between biomed-
ical knowledge about disease and clinical knowledge
about patients.
For us, three important tasks of application ontology

development are: determining the settled science; finding
common term usage; and establishing any idiosyncratic
terms used in specific settings or by specific individuals.
Determining the settled science is finding the concepts
(ideas, entities, etc.) and relationships that have been
agreed upon by the relevant scientific community. The
settled science is reflected in the common term usage for
that specialty. Term extraction focused on individual texts
seems to conflate individual clinicians’ or authors’ use of
common terms with settled science. The philosophical
error here is mistaking epistemology with ontology, which
is mistaking an individuals understanding of the world
with the way the world is or at least an agreed upon un-
derstanding of the world. Individual textbooks and journal
articles are not necessarily accurate with respect to the
settled science or the breadth of commonly used terms, al-
though the former is more likely than the latter. Clinical
texts, in contrast, are likely to use a wider breadth of
common terms, but reflect an epistemological under-
standing of the field. Their term use will derive from the
common medical sublanguage for that specialty. Some
individuals may also have idiosyncratic uses that are ne-
cessary to understand their writings, but would muddy
a general ontology. Cognitive science puts these idiosyn-
cratic terms in a separate vocabulary. Our approach to
finding common usage that reflects settled science is to
analyze both clinical records and biomedical informa-
tion sources simultaneously in order to reconcile them
during development.

Semi-automatic ontology development and terminology
management
Ontology induction has historically meant extracting onto-
logical structure from text. On the one hand it seemed
sensible that the use of language would reveal the concepts
important to a domain and the linkages between them. On
the other hand, that would only be sensible if the text’s au-
thor did not think the reader already had a shared, funda-
mental, base level understanding of the world. Buitelaar
and Cimiano [9] call this most of the knowledge remaining
“under the surface” of the text [9]. They point out that even
with logical theories learned from text (e.g. Inductive Logic
Programming), it is unclear how well those theories reflect
the shared conceptualization that ontologies are designed
to represent. The surface textual level does not correspond
with the deeper semantic level. Due to this disconnect be-
tween text and semantics, concept and relationship identi-
fication from literature and chart review are currently, at
best, semi-automated. Two types of expert consultation are
necessary to verify the semantic content of the knowledge
extracted from text. Domain experts are used to verify
usage within the domain and ontology experts are used
to verify the soundness of the knowledge structure.
Several systems for semi-automated ontology (or termin-

ology) management have been developed [8,10-12] also in
clinical medicine [13-18]. These systems all perform three
basic functions: term, synonymy and relationship extraction
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on a targeted training corpus. Most of these ontology devel-
opment systems are evaluated on the single domain for
which they are created.
Term extraction
Term extraction techniques fall into two broad categor-
ies: Named Entity Recognition (NER) [8,10], and Infor-
mation Extraction (IE) [12,16-19]. Aside from NER and
IE, there are techniques that use corpus-based semantics,
such as term frequency, inverse document frequency or
other relative frequency information [8,20,21]. Other ap-
proaches focus on sentence-based semantics, such as con-
text window, graph-based [15,22] or a combination of the
two [23]. These semantic-based techniques require a pre-
determined set of terms to match. Text2Onto [13] for
example uses both IE and corpus-based semantics. There
are other systems, which require annotated text, that
won’t be discussed here [14,24].
Synonym extraction
When looking for synonyms and short forms (i.e. acro-
nyms and abbreviations) it is difficult to draw a clear line
between term and relationship extraction [23]. Term
matching using corpus-and sentence- based semantics
can be thought of as synonym extraction as can the ex-
traction of certain lexico-syntactic patterns (LSPs) (e.g.
“also known as”).
Relationship extraction
Relationship information is extracted after the relevant
terms have been found. The systems use the identified
terms to locate relations between them. Relationships
can be discovered by matching LSPs including those first
described by Hearst [25] and those used by Banyex et al
[16,17]. LSPs include “is a” for hierarchy and “(…)” or
“also known as” for synonymy [25]. Other methods in-
clude hierarchical clustering [26-28] rules [8,10,23] and
machine learning [12,22].
Corpora
As mentioned earlier people change the amount of ex-
planation they include in a document depending on the
expected audience. Therefore, it is sensible to use differ-
ent corpora depending on the information you would
like to find. One technique for ontology development is
to extract terms from a target corpus and relationships
from textbooks [10,16,17], journal articles or abstracts,
[23,29], other sources such as Wikipedia [30], DBpedia
[31], YAGO [32], WiBi [33] and data “forms” [34]. The
terms and relationships can be combined during the ex-
traction process [23] or in a manual post-process by
human experts [17,35].
Evaluation
Evaluation methodologies are many and varied. Term ex-
traction is generally assessed with precision and recall, also
called sensitivity and positive predictive value [22,35-38].
Precision and recall broadly refer to finding only the terms
of interest and finding all of the terms of interest, respect-
ively. Ontology development systems using this type of
evaluation report high precision scores 70%-80% with
lower recall around 50%. Others use the percentage of the
recommended terms that are accepted by subject matter
experts [8,39]. The approval scores for ontology develop-
ment systems range from a low of 15% [35] to a high of
70% [38], with an average of around 60% [26,37].
Automatically comparing relationships is more com-

plicated because it requires that matching terms are
found [40]. If the terms are different, the system looking
for matching relationships will not find them (e.g. car- >
van vs. auto- > van). Also when comparing to an existing
ontology or domain taxonomy [16,40] one must decide
how to classify relationships that overlap, but do not
match those in the existing ontology (e.g. bike- > tandem
and bike- > unicycle vs. only bike- > tandem). For these
reasons, relationship extraction is generally evaluated
using approval rates judged on a scale of either three or
five points from good to bad.

Objective
The objective of this work is to develop a semi-automated
ontology management system that can produce a concise
list of recommended clinical terms, synonyms and hier-
archical relationships. The innovation of the system is the
combination of many term, synonym and relationship ex-
traction techniques and the combined clinical and bio-
medical corpora to target the settled science and common
usage for a particular medical domain (specialty or dis-
ease). In contrast to others, we evaluate the generality of
the system across three use cases: Two hand-created on-
tologies (one for acute changes in mental status (ACMS)
and one for Medically Unexplained Syndromes (MUS));
and an ontology of echocardiogram summary statements

Implementation
SEAM a stand-alone system that is configurable and
modular. This self-sufficiency is an advantage because
clinical records are held in protected environments that
make the download and installation of external software
packages difficult. SEAM is built as a Java project with
modular processing steps and separate processing streams
for terms and relationships. We incorporate many of the
different approaches to term and relationship finding. The
idea is to collect as much information as possible and then
to use the combined corpus and filtering parameters to
increase precision without sacrificing recall. <H2 > The
SEAM structure is depicted in Figure 1.



Figure 1 A pictorial representation of the SEAM system. This figure shows the three processing stages of the SEAM system. NLP processes
are in the orange boxes. Each stage includes one or more phases A…F. Each box represents the database table created in that processing phase.
The dotted line indicates that term processing is separate from relationship processing.

Table 1 The UMLS semantic types used by SEAM for
partial matches and final recommendations

T020 Acquired Abnormality

T190 Anatomical Abnormality

T049 Cell or Molecular Dysfunction

T019 Congenital Abnormality

T047 Disease or Syndrome

T050 Experimental Model of Disease

T037 Injury or Poisoning

T048 Mental or Behavioral Dysfunction

T191 Neoplastic Process

T046 Pathologic Function

T184 Sign or Symptom

T033 Finding

T029 Body Location or Region

T080 Qualitative Concept

T023 Body Part, Organ or Organ Component

T081 Quantitative Concept
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Pre-preprocessing
Pre-processing (Figure 1, phase A) identifies the compo-
nent parts of a text so that those parts may be used in text
processing. The component parts identified begin with to-
kens. The process is called tokenization. Tokens can be
single words or punctuation symbols. Tokens are used in
sentence segmentation to identify sentences boundaries.
POS tagging attaches a part-of-speech tag to each token.
Chunking gathers tagged tokens into noun phrases and
verb phrases. SEAM uses the OpenNLP toolkit, as de-
scribed in detail in [41]. We chose not to stem the tokens
because the UMLS Metathesaurus contains lexical vari-
ants for each concept. We estimated that stemming would
not provide an increase in performance.
The output of this pre-processing is the structures that

we will use in the remaining processing phases. First we
find multi-word terms that the dictionary lookup may
have missed. The smallest term we are interested in is a
single word term, also called a unigram. As the number
of words in a term increases it is referred to as a 2-gram,
3-gram, etc. An example of a unigram is “aorta” and a
4-gram is “obstructive coronary artery disease”. Terms
with an unknown number of words are called N-grams.
We are interested in N-grams up to the size of a noun
or verb phrase.
We add dictionary lookup to pre-processing because

we are interested in medical terms. The dictionary look-
up uses an Apache Lucene index built by selecting all
terms from the clinical terminology sources and with
the disorder semantic types, listed in Table 1, from the
Unified Medical Language System (UMLS) Metathesaurus
[42]. Since we do not pre-process words from the docu-
ment (e.g. stemming), we do not pre-process the UMLS
Metathesaurus terms. We use lookup to find the UMLS



Doing-Harris et al. Journal of Biomedical Semantics  (2015) 6:15 Page 5 of 15
Metathesaurus concept unique identifiers (CUI) and
semantic type identifiers (TUI) for fully and partially
matched N-grams. Fully matched N-grams appear exactly
in the UMLS Metathesaurus. If the Lucene index finds
more that one match for a given string, the highest scor-
ing matched concept is selected. Ties are not arbitrated
rather the first match returned by the index is used. Par-
tially matched N-grams contain at least one word in com-
mon with a UMLS concept. Partial matches are further
restricted to the desired semantic types listed in Table 1.
Partial matches are selected based on the match with the
highest number of words in common and the fewest extra
words. Our Lucene query does not respect word order.
Again, the first match returned by the Lucene index, with
the stated criteria, is chosen.
The second text component we are interested is called

an explanation. Explanations are patterns of phrases
within a sentence. The pattern of an explanation is noun
phrase, connector, and noun phrase. A connector is any
combination of tokens, such as a verb phrase or a paren-
thesis. Examples of explanations are “CAM or CAM
ICU is a highly sensitive and specific method…” and “a-
fib on Coumadin…” The noun phrases in these examples
are “CAM or CAM ICU,” “a highly sensitive and specific
method,” “a-fib,” and “Coumadin.” The connectors are
“is” and “on.” A single sentence may contain more than
one explanation.
The final component of interest is a term frequency by

inverse document frequency (TF-IDF) vector for each
N-gram. The TF-IDF vector contains one entry for each
document. An entry is the frequency of occurrence of
the N-gram in that document normalized by the inverse
of its average frequency across all documents. These
vectors are compared for similarity.

Term extraction
In the term extraction phase (Figure 1, phase B), we iden-
tify the terms that are relevant to the use case at hand by
locating health-related terms in the corpus. Dictionary
lookup will have already found many health-related terms.
The c-value and Termhood scoring algorithms find health-
related terms that may have been missed. The c-value and
Termhood equations are listed in Table 2 and are de-
scribed in more detail in [39].
Stop words are eliminated in this phase, since they

were not removed during the text search phase. Stop
words within noun and verb phrases were retained to
aid in relationship identification. Specifically, determiners
were not removed because nouns joined by “is a” are im-
portant for finding hierarchical relationships.

Synonym extraction
In this phase, synonym groups are extracted (Figure 1,
phase C). These groups reflect the concepts relevant to
the use case. We use four synonym extraction tech-
niques that fall into two related pairs. The first pair of
techniques determines potential groupings of topics that
correlate across the whole corpora. The second pair uses
pattern matching on the explanations.
The corpus-based semantics filters are TF-IDF vectors

[43] and context vectors [44-47] with above threshold
similarity. We define a context vector as the sequence of
ten words that occurred in the text, 5 before and 5 after
the target term. Each term has an array of words for each
of the 10 positions containing the words that occurred in
that position. The dot product of two such vectors is the
number of times they have at least 1 word in the same
position. Preliminary tests found that position agnostic
comparisons produced too many false positives.
The pattern matching pair of synonym extraction tech-

niques operate on the explanations. First we use lexico-
syntactic patterns (LSPs) [25]. LSPs are patterns of words
and symbols that appear as the connector in an explan-
ation (e.g., NP1 also known as NP2, NP1 (NP2, and NP2
referred to as NP1). The LSPs are listed in Table 3. A sec-
ond pattern overlaps with the first but includes a verb and
a match to NP2 as well. NP1s with the same connector
that contains a verb and the same NP2 are likely to be
synonymous [22,46,47]. For example, the explanations
“a pressure pain (NP1) associated with (connector) dia-
phoresis (NP2)” and “substernal chest pressure (NP1)
associated with (connector) diaphoresis (NP2)” indicates
that a pressure pain and substernal chest pressure are
synonymous.

Relationship extraction
This phase (Figure 1, phase D) identifies additional hier-
archical relationships using LSPs (see Table 2). These
LSPs are designed to identify hierarchical relationships
(e.g. is a, a type of, such as) [25].

Candidate filtering
Recommendation lists cannot be too long or reviewers
will find them overwhelming so we filter them to find a re-
stricted set with high precision (Figure 1, phase E and F).
In this phase the final lists of recommended terms, syno-
nyms and hierarchical relationships are produced.
We exclude terms that are so uncommon that they are

unlikely to be relevant or so likely that they are probably
not specific to the topic at hand, by focusing on term
that occurs in between 5% of the number of documents
in the smaller of the two corpora (with a minimum value
of 1) and 95% of the number documents in the larger of
the two corpora. Inverse document frequency is de-
signed to do this, but since we are combining corpora
we found this augmentation necessary.
We also focus on terms that occurred above a fre-

quency threshold across both corpora. This threshold is



Table 2 Equations used in SEAM

C-value (a) [18] log2 aj j⋅f að Þ; jα is not nested

log2 aj j f að Þ− 1
P Tαð Þ

X
b�T α

f bð Þ
 !

; otherwisej

8><
>:
where:

α is the candidate string

f(.) is its frequency of occurrence in the corpus

Τa is the set of extracted candidate terms that contain a

P(Τa) Is the number of these candidate terms

Termhood (a) log P vote¼yesð Þ
P vote¼noð Þ
� �

[53] = −0.7836 +

0.7541* FirstPOS _ ADJECTIVE –

1.3722* FirstPOS _ ADVERB +

0.3541* FirstPOS _ NOUN +

1.4182 * FirstPOS _ VERB –

0.7722 * LastPOS _ ADJECTIVE +

2.2576 * LastPOS _ ADVERB +

0.0285 * LastPOS_NOUN +

0.6038 * LastPOS _ VERB +

1.2899 * NP _ VALUE +

1.0475 * REPEAT _ SUP _ GREATER _ MEDIAN +

0.8417 * REPEAT _ SUB _ GREATER _ MEDIAN +

0.8422 * DISTINCT _ PERHOST _ GREATER _ THAN _ MEDIAN

where:

POS is Part of Speech tag

REPEAT_SUP is number of supra (candidate terms containing a) = P (Τa)

REPEAT_SUB is subgroup (candidate terms that are contained within a) = P (Αt)

NP_VALUE is a a noun phrase

DISTINCT_PER_HOST is equivalent to document frequency

MEDIAN is calculated for the whole document set

TF-IDF = wi,j = TFi,j x IDFi [43] TFi;j ¼ f i;j
maxz f z;j

where:

TFi,j is term frequency for keyword ki in document dj

fi,j is the number of times ki appears in dj

maxzfz,j is the maximum frequency across all keywords kz in dj

IDFi ¼ log N
ni

where:

IDFi is the inverse document frequency for keyword ki

N is the total number of documents in the corpus

nj is the number of documents that ki appears in

Cosine similarity [43] cosine wc
→
;ws
→

� �
¼ wc

→
⋅ws
→

wc
→ �ws

→ ¼
XK

i¼1
wi;cwi;sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

i¼1
w2

i;c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

i¼1
w2

i;s

q
where

wi,j is defined above
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Table 3 Lexico-syntactic patterns used to identify
relationships [25]

Relationship Patterns found between NP1 and NP2

Synonymy “%also%known%as%”, “(“, “aka”, “so called”, “also called”,
“%also% referred% to%”, “%referred% to%”

Hierarchy “%such%as%”, “%or other%”, “%and other%”,”%including
%”, “%associated with”, “is”, “are”, “is “, “%type of%”,”are “
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discussed in the results of each use case because it changes
for each one.
We employ four term filters that fall into two pairs.

Filters one and two identify direct and partial UMLS
Metathesaurus matches with the semantic types from
Table 1. Filters three and four find non-matched terms
with c-value and Termhood scores also above threshold.
Terms that share the same UMLS CUI are combined
into a synonym group for presentation together.
Filters for term relationship groups, focus on groups

that contain recommended terms from phase E, with fre-
quency counts and the method used to find the group.
Here frequency is the number of times the relationship
was found. The settings for each of these filters are de-
scribed in the evaluation sections as they change depend-
ing on the use case.
System parameters
The configurable parameters for SEAM are semantic
cosine similarity thresholds (TF-IDF and context vector)
and term filter settings. Parameters are configured to
produce the number of results found in preliminary test-
ing to be comfortable for experts to review (around 200)
and a valid term percentage that looked promising. We
will include the parameter configuration with the descrip-
tion of each implementation.
We observed that cosine similarity thresholds of 0.90

and 0.80 for TF-IDF and context, respectively, performed
consistently well. These parameters did not need to change
with the size of the corpora because TF-IDF is scaled in
the number of documents and our implementation of con-
text vectors did not take into account the number of times
context words overlapped.
SEAM’s configurable parameters are 1) frequency thresh-

old for UMLS Metathesaurus full matches; 2) frequency
threshold for UMLS Metathesaurus partial matches re-
stricted to the relevant semantic types; 3) frequency
threshold for terms not found in the UMLS Metathe-
saurus; 4) C-value threshold; 5) Termhood score thresh-
old. The choice of C-value and Termhood thresholds is
based on the point at which the number of terms found
drops below 50. The precision of these methods is low so
allowing larger numbers of terms through the filters re-
duces precision. In preliminary testing, we determined that
with returns above 50 the depletion was unacceptable.
Evaluation criterion
The goal of our system is to recommend terms in com-
mon usage. To that end, we consider a term recommen-
dation successful if two out of our five reviewers find it
relevant to the use case.

Use cases
We apply the SEAM system to three use cases. The first
two use cases are ontology expansions. Terms identified
by SEAM are compared with concepts currently included
in these two disorder-specific ontologies. The comparison
is used to refine the input and configuration of SEAM to
produce concise lists for expert approval, not as “gold
standards” against which SEAM is being judged.

Use case 1
We will use SEAM to identify new terms and relation-
ships for an ontology of acute changes in mental status
(ACMS). The existing ACMS ontology was built using
terms extracted from hand-reviewed clinical documents
from 25 patients, 12 of whom were judged to have delir-
ium. Two subject matter experts located 168 terms. Those
terms were used to construct the ontology in OWL. Terms
may be associated with more than one concept. For ex-
ample, delirium can be both a syndrome and a symptom.
They can also indicate higher-level concepts to include.
The resultant ontology has 195 concepts (160 classes and
35 individuals) with 369 hierarchical relationships.

Use case 2
We will be using the same process as Use Case 1 to find
new terms and relationships for an existing ontology of
medically unexplained syndromes (MUS). The existing
ontology was created using: reference to the ICD 11 -
body systems ontology [48]; consultation with domain
experts on inclusion and exclusion criteria for the three
most common MUS (irritable bowel syndrome, chronic
fatigue syndrome and fibromyalgia), literature and chart
reviews. It was constructed in accordance with the ideas
on syndrome domain ontology described in Doing-Harris
[1]. It is build in OWL. The ontology contains 236 entities
(201 classes and 36 individuals) and 413 hierarchical
relationships.

Use case 3
The third application of SEAM will be to enhance the
pick-list of findings used to summarize echocardiogram
(ECHO) reports. The pick-list is a hierarchical smart list
of relevant sentence pieces that the hospital EHR system
has to facilitate the creation of echocardiogram summary
reports. Clinician’s pick pieces from the list to create sum-
mary sentences. Hence it is called a pick-list. Each sum-
mary report includes a list of clinically relevant findings.
Choosing entries from a predetermined pick-list populates



Doing-Harris et al. Journal of Biomedical Semantics  (2015) 6:15 Page 8 of 15
this summary list. The cardiologists at the University of
Utah would like to increase the number of entries on the
pick-list. To evaluate SEAM, we will determine the num-
ber of current pick-list sentences in which SEAM identi-
fies the relevant terms as well as the number of novel
relevant terms and relationships identified by SEAM.

Corpora
Clinical corpora
The corpora used to evaluate SEAM differed within and
between the three use cases. These differences allowed
us to investigate the impact of corpus changes on the
lists of recommended terms, synonyms and hierarchical
relationships returned. For the ACMS and MUS use cases,
we employed clinical documents from the 2009 i2b2
Medications Challenge [49]. The first set was a selection
of 199 of the i2b2 text only documents. The second in-
creased the selection to 696 documents. For the ECHO
application, the clinical documents were 2879 echocardio-
gram reports generated by the University of Utah depart-
ment of cardiology. Since we were only interested in
summary statements, we excluded all other portions of
the reports. We also combined each set of five summary
statements into a single document to reduce the number
of columns in the TF-IDF database table. This amalgam-
ation will affect the IDF values for the terms, but will do
so equally for all terms so it should not affect results.

Biomedical corpora
The specificity of a corpus to a domain rested on the se-
lection of journal articles for use cases 1 and 2. Journal
articles (in PDF format) were used for the ACMS and
MUS use cases. These articles were collected during lit-
erature reviews for papers and grant proposals related to
the two topics. For the ACMS use case we included 19
articles. For the MUS use case we included 47 articles.
For the ACMS and ECHO use cases we also selected
from a database of case reports downloaded automatic-
ally from PubMed (as XML files). These reports were
chosen by the medical specialties listed in PubMed. They
were neurology and cardiology, respectively. Their body
text was isolated for analysis.

Results
Results are reported in terms of direct and partial matches
to the original ontologies. These match types are calcu-
lated the same way as the direct and partial matches dis-
cussed earlier with the UMLS Metathesaurus. Direct
matches are as they sound. Partial matching means that
the recommended terms share a word or words with the
matched entry. For example, the recommended term hal-
lucinations is found in the ontology term visual hallucina-
tions or (less helpfully) commands is found in able to
follow commands. In the other direction, recommended
terms incorporate terms from the ontology. For example
the recommended term permanent cognitive decline and
dementia partially matches the ontology concept demen-
tia. A more detailed look at the difference between direct
and partial matches including measures of term overlap
would be interesting in terms of each individual ontol-
ogy, but we did not think that the its reflection on sys-
tem performance is enough to bring it within the scope
of this paper.
Direct or partial term matches between the recom-

mended terms and the existing ontologies were found
using a query for term equivalence and overlap. Experts
did not review this determination. Five experts reviewed
results for each use case for a total of 7 medical doctors,
a third year medical student, and the first author. They
performed the expert reviews of the recommended
terms that were not found in the existing ontologies.
Term extraction included terms with the UMLS se-

mantic types Qualitative Concept and Quantitative Con-
cept. The UMLS definitions are “A concept, which is an
assessment of some quality, rather than a direct measure-
ment“ and “A concept, which is an assessment of some
quality, rather than a direct measurement” respectively
[50]. These terms are necessary for ontology development,
but are not specific to a domain. They include terms like
borderline, identified, revealed, and improved. These terms
were excluded from expert review because they are not
domain specific.

Use case 1: ACMS ontology terms and relations extraction
A large targeted clinical corpus (199 files from i2b2), with
added biomedical articles (19): a corpus of 199 clinical
records that contained the words neuro- or mental sta-
tus were selected from the i2b2 dataset of 696 records.
This configuration generated 39,863 potential terms.

The breakdown of terms found within the corpus is
listed in Table 4.
Term filter settings: All four term filters’ frequency

thresholds were set to 10 occurrences. Filters one and
two were for UMLS full and partial matches with the rele-
vant semantic types. Filters three and four found non-
matches with C-value above 50 and Termhood above 4.6,
none of these terms were relevant so they are ignored in
the expert analysis.
After filtering there were 173 recommended terms. The

number of recommendations from each filter is listed in
Table 5. We consider the 25 recommended terms found
in the ontology to be successful recommendations because
we are interested in how the system performed not in the
ontology coverage. We use the existence of a term in the
ontology only as an indication that it is relevant to the
topic, and therefore an accepted recommendation.
Synonym and Hierarchy Filter Settings: The frequency

threshold for synonyms was set to ten. We observed that



Table 4 The breakdown in potential terms found from each corpus with those found in the existing ontology and
matched to the UMLS Metathesaurus

Use
case

Potential
terms

Terms from each Corpus Existing ontology
terms found

Matched to UMLS

Metathesaurus

Biomedical Clinical Overlap Full Full+ Partial/Total Full Partial

ACMS 39,863 14,407 23,936 1,520 66 163/166 1,138 8,021

MUS 86,931 27,152 56,883 2,896 88 219/219 4,962 18,410

ECHO 83,368 78,358 4,268 1,342 198 198/198 4,695 15,843
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synonym and hierarchy groups identified using LSPs
were few in number, but contained more accepted rela-
tionships. ASIUM synonym groups were the same. There-
fore, we lowered the threshold to one occurrence for
relationships identified by these techniques, leaving it at
10 for TF-IDF and context identified synonyms.
These settings found 51 synonym groups. All groups

contained recommended terms and terms that had
matched to UMLS (full or partial). The breakdown of
relationship groups from the different filters is in
Table 6. Hierarchical Relationship Filters returned six
relationship groups.

Expert review
Results of the expert reviews of recommended terms
across use cases are reported in Table 7. For the non-
matched recommended terms, agreement between re-
viewers reflected the differences in language use discussed
earlier. The Fliess’ kappa score across the five experts was
0.38 showing only fair agreement. The number of terms
considered related to ACMS varied between 19 and 46.
Forty-eight terms were found by two or more reviewers to
be relevant to ACMS but not in the existing ontology and
31 were qualitative terms, which are relevant but had not
been considered when the ontology was constructed, this
is an approval rate of 60%. Leaving 70 recommended
terms as unrelated to ACMS, 23 accepted by only 1
Table 5 SEAM term results for the ACMS targeted clinical
corpus (n = 199), with 19 biomedical articles

Filter

Terms Filter 1: Direct UMLS matches in both corpora 81

Filter 2: Partial matches to UMLS in both corpora 101

Filter 3: Non-matches with c-value > 50 in clinical
corpus or both

-

Filter 4: Non-matches with Termhood score > 4.6
in clinical corpus or both

-

Combined recommended terms with the same CUI -9

Recommended Terms (total) 173

Found in
ontology

Fully Matched 12

Partially Matched 13

Recommended Terms found in ACMS
Ontology

25
reviewer and 47 rejected by all 5. The maximum approval
rate would be 73%, but since our goal is generality, not
idiosyncrasy, we consider 60% the true approval rate (see
Table 7).
Results of the expert reviews of recommended rela-

tionships (across use cases) are reported in Table 8. For
synonyms, we found eighteen approved synonym groups,
43%. For the hierarchical relationship groups, all five ex-
perts agreed that four of the six groups, 67%, contained
valid relationships relevant to ACMS, two relationships
from the current ontology and two new relationships.

Alternative corpus constructions
For this use case we started with a small general clinical
corpus (76 files from i2b2) and added biomedical articles
(19). However, even with changes in the filters we found
the ontology coverage low. This clinical document cor-
pus was small and heavily weighted toward cardiac cases.
Thirty-four out of 76 files contained the string cardi-,
while only 19 contained neuro- or mental status. We hy-
pothesized that this composition was impeding the iden-
tification of the ontology terms. Therefore, we altered it
to the configuration above.
In a second alternative corpus construction we retrieved

case reports from the PubMed case reports download
database described earlier, rather than use biomedical arti-
cles. One of our colleagues reasoned that case reports may
contain language that more closely resembled the lan-
guage used in clinical documents. The possible language
resemblance and ability to directly target reports contain-
ing three ACMS key terms (delirium, delirious and altered
mental status) promised to return a more concise list of
terms. Unfortunately, this did not happen. The number
Table 6 SEAM relationship results for the ACMS targeted
clinical corpus (n = 199), with 19 biomedical articles

Filter

Relationships Filter 1: TF-IDF 16

Filter 2: LSP 21

Filter 3: ASIUM 14

Filter 4: Context Vectors -

Recommended Synonymy Groups (total) 51

Recommended Hierarchy Relationships (total) 6



Table 7 Expert review of terms for each use case, Recommended vs. Accepted terms. Qualitative terms are reported
separately because they were not considered when the ontologies were first constructed

Use Case Reco-mmended Matched Qualitative Accepted (2 + revs) Total Accepted Accepted(<2 revs) Misses Fleiss’ Kappa

ACMS 173 25 (14%) 31 (18%) 48 (28%) 103 (60%) 23 (13%) 47 (26%) 0.38 (Fair)

MUS 271 61 (23%) 35 (13%) 67 (25%) 163 (60%) 26 (9%) 83 (31%) 0.29 (Fair)

ECHO 363 289 (80%) N/A 37 (10%) 326 (90%) 14 (4%) 23 (6%) 0.66 (Substantial)

Table 9 SEAM term results for the MUS large clinical
corpus (n = 696), with 47 biomedical articles

Filter

Terms Filter 1: Direct UMLS matches in both corpora 134
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of recommended terms increased to 255, but the num-
ber of ontology terms directly and partially matched de-
creased to 33.

Use case 2: MUS ontology comparisons
Large clinical corpus (696), with 47 biomedical articles
The MUS ontology contains 219 concepts. It is designed
differently to the ACMS ontology. Because MUS is a diag-
nosis of exclusion, the ontology includes many other diag-
noses to exclude. The contributions of each document
type, the matches to the existing ontology, and UMLS
Metathesaurus are listed in Table 4.
The filters remained the same as in the previous use

case except the occurrence threshold was increased to
20 and non-matched terms were restricted to only those
appearing in both corpora. After filtering there was a
total of 271 recommended terms. Table 9 shows the
number of recommended terms that passed each filter
and the matches to the current ontology. Sixty-two rec-
ommended terms are either full or partial matches the
current ontology. Table 10 shows the breakdown of filter
results for the 75 synonym groups that were recom-
mended. TF-IDF performed badly so it was not used to
generate synonym groups. Fourteen hierarchical rela-
tionships were recommended.

Expert review
Results of the expert reviews of recommended terms
across use cases are reported in Table 7. Expert agree-
ment, by Fliess’ kappa, is lower than for ACMS although
still fair at 0.29. Experts found between 8 to 58 terms
relevant. We used agreement between 2 reviewers as an
assessment of relevance. As you can see in Table 7,
twenty-five percent of the recommended terms were ap-
proved by more than one reviewer as related to MUS,
Table 8 Expert review of relationships for each use case,
Recommended vs. Accepted relationships

Use Case Type Rec Approved Misses

ACMS Synonymy 51 18 (43%) 33 (57%)

Hierarchy 6 4 (67%) 2 (33%)

MUS Synonymy 75 19 (25%) 56 (75%)

Hierarchy 14 9 (64%) 5 (36%)

ECHO Synonymy 127 34 (27%) 93 (73%)

Hierarchy 16 5 (31%) 11 (69%)
but are missing from the ontology. Thirty-five terms are
from the UMLS semantic types Qualitative and Quantita-
tive Concepts and were not explicitly considered in build-
ing the MUS ontology. Adding together the matched,
qualitative, and related terms, we estimate the approval
rate at 60%.
We had an additional point of comparison for this

dataset, a list of MUS symptoms identified by another
group within the project. Since the synonym list was not
designed as an ontology we used it as an indicator of
whether a term was useful in identifying MUS, not as
another ontology for coverage assessment. Thirty-three
(33) of the 62 recommended terms that matched to the
existing ontology also matched to the symptom list.
Nineteen other recommended terms also matched to the
symptoms list. Nine of the terms considered misses by
expert review were on the symptom list. These 9 are not
considered approved terms because they likely represent
idiosyncratic use. The symptoms list is not comprehen-
sive, as it does not include 28 of the 61 terms matched
to the current ontology; including chronic pain, fibro-
myalgia, and constipation. Two of the qualitative terms
are included in the symptoms list, indicating the utility
of at least some of these terms.
Results of the expert reviews of recommended relation-

ships across use cases are reported in Table 8. After exclud-
ing the TF-IDF groups, SEAM recommended 75 synonym
groups. LSPs created the largest number of synonym
groups, probably due to the large number of documents.
Expert review of the synonyms and relationships found
Filter 2: Partial matches to UMLS in both corpora 148

Filter 3: Non-matches with c-value > 50 in both
corpora

5

Filter 4: Non-matches with Termhood score > 4.6 in
both corpora

2

Combined recommended terms with the same CUI -18

Recommended Terms (total) 271

Found in
ontology

Fully Matched 12

Partially Matched 50

Recommended Terms found in MUS Ontology 62



Table 10 SEAM relationship results for the MUS large
clinical corpus (n = 696), with 47 biomedical articles

Filter

Relationships Filter 1: TF-IDF -

Filter 2: LSP 40

Filter 3: ASIUM 19

Filter 4: Context Vectors 16

Recommended Synonymy Groups (total) 75

Recommended Hierarchy Relationships (total) 14
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nineteen synonym groups (25%) contained valid synonyms.
Nine of the 14 hierarchical groups (64%) were considered
correct by 1 or more of the expert reviewers.
These results are similar to the best configuration for

the ACMS ontology, except that there were more syno-
nym groups and their approval rate was lower. Table 10
shows the comparison of SEAM configurations.

Use case 3: echocardiogram summary statements
Targeted extremely large clinical corpus (2874) with a large
number of case reports (232)
In this use case we first wanted to identify the pick-list
sentences. We found 1174 unique sentences in the clin-
ical (summary) documents. By looking for sentences that
share their first 200 characters and occurred in more
than 5 documents, we identified that 131 sentences were
confirmed to have come from the pick-list. Our goal is
to produce a recommended term list that contains at
least one term from each of the 131 pick-list sentences
as well as terms related to echocardiography not in the
pick-list with a few distractors as possible. There were
198 of these pick-list terms. The breakdown of terms
from the clinical, biomedical, the pick-list terms (called
existing ontology, here) and UMLS Metathesaurus are
listed in Table 4. Before filtering, SEAM finds 198 dis-
tinct pick-list terms that are associated with 131 pick-list
sentences 93%.
Term filter settings are summarized in Table 11. For

this use case the frequency threshold was reduced to
five, due to the relative small number of terms from the
Table 11 SEAM term results for the Echocardiogram large
clinical corpus (n = 2874/5 = 575), with 232 case reports

Filter

Terms Filter 1: Direct UMLS matches in both corpora 90

Filter 2: Partial matches to UMLS in both corpora 180

Filter 3: Non-matches with c-value > 50 in both corpora 71

Filter 4: Non-matches with Termhood score > 4.6 in
both corpora

89

Combined recommended terms with the same CUI -70

Recommended Terms (total) 360

Recommended Terms found on the Pick List 289
clinical corpus. All four term filters were also set to in-
clude terms that appear only in the clinical corpus as
well as those from both. The repetitions nature of these
terms is indicated by the high number of repeat CUIs
found (70).
Table 12 shows the breakdown of synonym groups

found by the different methods. The majority are from
TF-IDF, which is currently our least accurate algorithm.

Expert review
Results of the expert reviews of recommended terms
across use cases are reported in Table 7. Eighty percent
of the recommended terms match 152 of the distinct
pick-list terms. Because we include partial matches, more
than one recommended term could match the same pick-
list term. For this task we did not exclude qualitative
terms. Expert agreement on this recommended term list
was substantial (Fliess’ kappa = 0.66), with relevant term
lists ranging in size from 42 to 26. Two or more reviewers
agreed on 10% of the terms. Combining pick-list and
agreed upon terms results in an approval rate of 90% (see
Table 7).
Results of the expert reviews of recommended rela-

tionships across use cases are reported in Table 8. The
synonym and relationship filters are the same as used in
the previous two use cases. They return 127 synonyms
and 16 hierarchical relationships. Repeated CUIs identi-
fied 70 synonymous relationships. Only 4 of the 5 expert
reviewers assessed the hierarchical relationships. Twenty-
seven percent of the synonymy relations were considered
valid by at least 1 reviewer. Thirty-one percent of the
relationships were found to be valid by more than two re-
viewers. Forty-four percent of the 16 hierarchical relation-
ships were found to be valid by at least one reviewer,
while twenty-five percent had three or more.

Discussion
We found that SEAM produced a concise list of recom-
mended ontology term additions across a variety of use
cases. The approval rate of recommended terms in-
creased with the number and specificity of clinical docu-
ments in the corpus, from 53% when there were 199
Table 12 SEAM relationship results for the Echocardiogram
large clinical corpus (n = 2874/5 = 575), with 232 case
reports

Filter

Relationships Filter 1: TF-IDF 66

Filter 2: LSP 29

Filter 3: ASIUM 25

Filter 4: Context Vectors 1

Recommended Synonymy Groups (total) 121

Recommended Hierarchy Relationships (total) 16
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clinical documents that were not specific to the ontology
domain, to 89% when there were 2879 documents very
specific to the target domain.
Approval rates for relationship recommendations

remained relatively stable as the number of journal arti-
cles increased from 19 to 47 at around 60%. Changing to
case reports caused the approval rate to drop to around
30% despite a substantial increase in the total number of
documents. Overall the number of recommended hier-
archical relationships was very low, although the approval
rate was good. Future work will focus on increasing their
number.
Interestingly, we found that expert agreement for the

first two uses cases was only fair. We think this is indica-
tive of variability in clinical vocabulary based on experi-
ence. The medical student selected the smallest group of
terms, while an attending physician selected the largest.
An attending physician will have had more clinical ex-
perience and more chance to encounter wider clinical
term usage.
Keeping the recommended list concise and similar in

size across changes to the corpus size required adjusting
the frequency threshold and corpus from which to rec-
ommend terms. As the number of clinical documents
increased, the threshold frequency of occurrence for a
recommended term could also increase, leading to a list
with a 15% better approval rate. When the document
corpus was highly specific the overlap between the clin-
ical and biomedical corpora was too small causing us to
widen the recommended term filter to include terms
found only in the clinical text. This widening may have
caused a lack of LSP and ASIUM results for the terms
from clinical text only, leading to the low approval rates
for the synonyms and hierarchical relationships.
One possible difficulty our recommended term list may

have is due to the impact of partial matches both to UMLS
and to the ontology terms. Term finding in Medicine is
particularly complex because Medical vocabulary includes
many multi-word terms [34]. Identifying the constituents
of multi-word clinical concepts can be difficult. In some
cases, a multi-word term containing an anatomic location
is seen as a single term. For example, “perforation of the
lower bowel” includes the UMLS concepts (disorder)
bowel perforation and (anatomical location) lower bowel,
bowel must be attached to both perforation and lower to
find the appropriate mappings. Those words alone are not
UMLS concepts. In contrast, “cranial fracture of the right
parietal bone” includes the UMLS concepts (disorder) frac-
ture, (anatomical location) cranium specifically (anatom-
ical location) right parietal bone. Here cranial must be
separated from fracture to identify the correct UMLS
concept and two different anatomic locations must be rec-
onciled. Because it is not possible for the machine to de-
termine when words must be combined or split, terms
that have overlapping words are considered matches.
However, not all overlaps are equivalent. On the ACMS
recommended term list ca is considered a match for
‘abdominal discomfort relieved by defecation’, which is
obviously wrong. A simple solution would appear to be to
insist on spaces before or after the partially matched word.
This solution would cause words partially matched due to
plurals (e.g. vital sign, vital signs) to become misses. It
would also interfere with finding terms that have been ab-
breviated in the clinical note. Clinical notes are prone to
ad hoc abbreviations [51]. By including partial-word
matches we hoped to catch “ca” used to refer to “cancer”
or “roc” to “rocuronium”. We will address this problem
further in future work. In pursuit of the solution, we will
re-examine stemming. These types of terms are an ex-
ample of why ontology developments systems are cur-
rently only semi-automated.
One of the reviewers pointed out that doing a head-

to-head comparison with a system from the introduction
would be a simple test of SEAM’s efficacy. However, we
were unable to perform a test. Ontolearn is not available
as software (documentation and ontology files can be
downloaded). OntoLT is available but only compatible
with the 2006 version of Protégé. Text2onto also dates
back to 2007. A system that we could access was the
OBO-edit term finder. This and other term finding sys-
tems are not performing the same task as SEAM. They
seem to be aimed at extracting as many words as possible
from a single document, not looking across documents
for commonalities. The OBO-edit term finder, when given
any one of the SEAM corpora, failed to return results. It
did return a long list of results for a single document.
In their paper on challenges and new directions in bio-

medical ontologies, Hoehndorf, et al, describe four as-
pects of an ontology that should always be addressed
[52]. The first aspect is the degree of formality of the lan-
guage. SEAM supports formal ontology development.
The larger SEAM system exports the ontologies created
with it in OWL. The second aspect is the complexity of
the ontology description. SEAM proposes descriptions
from the source documents using simple lexical pat-
terns. The descriptions found in this way are not com-
plex. SEAM is limited in that a rich ontology should also
include mierological (i.e. part of ) relationships. There
are plans to include a part of component for SEAM, but
it is not yet functioning well enough to report. The third
ontology aspect is the interpretation of what constitutes
a class. This aspect of ontology refers to the decision to
build using realist principals or not. Realist principals
dictate that the concepts in the ontology represent en-
tities in the real world. We leave interpretation decisions
to human reviewers. We will include in the expanded
SEAM system guidance for developers about creating
realist entities and maintaining their integrity through



Doing-Harris et al. Journal of Biomedical Semantics  (2015) 6:15 Page 13 of 15
the development process. The final aspect is the orthog-
onality of the context of the ontology. SEAM is designed
to expand existing ontologies. The larger SEAM system
is able to read in OWL files and expand the ontologies
contained in them. However, ontology integration is not
available in this lightweight iteration.
The realist aspect to the ontologies described here is

the MUS top-level from [1]. One of the findings from
the current work that will have an impact on the top-
level comes from the qualitative terms in the recom-
mended term sets. Terms like was considered, revealed,
consideration, and confirmed were reminders that when
reading a document one creates not only a representa-
tion of the world that it is describing, but also a repre-
sentation of the document’s author. This representation
of the author (e.g. are they decisive, are they reliable) al-
lows the reader to interpret not just the world as the au-
thor saw it, but to extrapolate to something closer to the
world as it actually is. We are currently pursuing a way
to include concepts related to the representation of the
author into an ontology for our larger goal of extracting
knowledge from clinical documents.

Future work
In future work, we will address a more advanced version
of context vector synonymy calculations. We will weight
the intersection of context vectors based on the number
of times the matched word occurred for each term.
In a different setting, we will investigate the ontologies

including their coverage of their target domain. We will
also assess their utility in automated chart review to de-
termine patients with MUS or ACMS and the expansion
of the echo pick-list.
Expanding SEAM to domains outside of medicine by

replacing journal articles with those from the new field
of interest and clinical texts with other technical reports
would be straightforward, but changing the dictionary
look-up would be more difficult. We are not aware of a
resource equivalent to the UMLS Metathesaurus for
other specialized domains. WordNet could be used, but
it seems likely to be too general to eliminate many ir-
relevant words. However, use case 3 shows that highly
specialized texts may overcome the need for elimination
through look up. Some developers have used textbook
glossaries as specialized look-up sources [10]. Since our
work is focused on medicine, we have not explored this
issue in detail.

Conclusion
SEAM can produce a concise list of recommended clin-
ical terms, synonyms and hierarchical relationships re-
gardless of medical domain. SEAM combines many
term, synonym and relationship extraction techniques
and uses combined clinical and biomedical corpora to
target the relevant terms and relationships. We have dem-
onstrated the generality of the system across three use
cases: Two hand-created ontologies (one for acute changes
in mental status (ACMS) and one for Medically Unex-
plained Syndromes (MUS)); and an ontology of echocar-
diogram summary statements.

Availability and requirements

� Project name: SEAM
� Project home page: http://kdh-nlp.org/Seam-project/

seam-home.html
� Operating system(s): Platform independent
� Programming language: Java (1.6 or higher)
� Other requirements: MySQL Metathesaurus
� License: GNU General Public License v3
� Any restrictions to use by non-academics:

See NOTICE in Software

Endnote
aOntology entries are also referred to as entities. The

distinction between entities and concepts reflects a current
difference in the approach to ontology development that
is outside the scope of this paper. Here we choose concept
since we will not address the additional steps necessary to
identify entities.
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