1,600 research outputs found

    Feasibility of predicting performance degradation of airfoils in heavy rain

    Get PDF
    The heavy rain aerodynamic performance penalty program is detailed. This effort supported the design of a fullscale test program as well as examined the feasibility of estimating the degradation of performance of airfoils from first principles. The analytic efforts were supplemented by a droplet splashback test program in an attempt to observe the physics of impact and generation of ejecta. These tests demonstrated that the interaction of rain with an airfoil is a highly complex phenomenon and this interaction is not likely to be analyzed analytically with existing tools

    Density Matrix Renormalization Group Study of the Disorder Line in the Quantum ANNNI Model

    Full text link
    We apply Density Matrix Renormalization Group methods to study the phase diagram of the quantum ANNNI model in the region of low frustration where the ferromagnetic coupling is larger than the next-nearest-neighbor antiferromagnetic one. By Finite Size Scaling on lattices with up to 80 sites we locate precisely the transition line from the ferromagnetic phase to a paramagnetic phase without spatial modulation. We then measure and analyze the spin-spin correlation function in order to determine the disorder transition line where a modulation appears. We give strong numerical support to the conjecture that the Peschel-Emery one-dimensional line actually coincides with the disorder line. We also show that the critical exponent governing the vanishing of the modulation parameter at the disorder transition is βq=1/2\beta_q = 1/2.Comment: 4 pages, 5 eps figure

    The supersymmetric Ward identities on the lattice

    Get PDF
    Supersymmetric (SUSY) Ward identities are considered for the N=1 SU(2) SUSY Yang Mills theory discretized on the lattice with Wilson fermions (gluinos). They are used in order to compute non-perturbatively a subtracted gluino mass and the mixing coefficient of the SUSY current. The computations were performed at gauge coupling β\beta=2.3 and hopping parameter κ\kappa=0.1925, 0.194, 0.1955 using the two-step multi-bosonic dynamical-fermion algorithm. Our results are consistent with a scenario where the Ward identities are satisfied up to O(a) effects. The vanishing of the gluino mass occurs at a value of the hopping parameter which is not fully consistent with the estimate based on the chiral phase transition. This suggests that, although SUSY restoration appears to occur close to the continuum limit of the lattice theory, the results are still affected by significant systematic effects.Comment: 34 pages, 7 figures. Typo corrected, last sentence reformulated, reference added. To appear in Eur. Phys. J.

    Phase diagram of the lattice Wess-Zumino model from rigorous lower bounds on the energy

    Full text link
    We study the lattice N=1 Wess-Zumino model in two dimensions and we construct a sequence ρ(L)\rho^{(L)} of exact lower bounds on its ground state energy density ρ\rho, converging to ρ\rho in the limit LL\to\infty. The bounds ρ(L)\rho^{(L)} can be computed numerically on a finite lattice with LL sites and can be exploited to discuss dynamical symmetry breaking. The transition point is determined and compared with recent results based on large-scale Green Function Monte Carlo simulations with good agreement.Comment: 32 pages, 12 figure

    Lattice Perturbation Theory by Computer Algebra: A Three-Loop Result for the Topological Susceptibility

    Full text link
    We present a scheme for the analytic computation of renormalization functions on the lattice, using a symbolic manipulation computer language. Our first nontrivial application is a new three-loop result for the topological susceptibility.Comment: 15 pages + 2 figures (PostScript), report no. IFUP-TH 31/9

    Supersymmetric Yang-Mills theory on the lattice

    Get PDF
    Recent development in numerical simulations of supersymmetric Yang-Mills (SYM) theories on the lattice is reviewed.Comment: 37 pages, 10 figure

    SUSY Ward identities in 1-loop perturbation theory

    Full text link
    We present preliminary results of a study of the supersymmetric (SUSY) Ward identities (WIs) for the N=1 SU(2) SUSY Yang-Mills theory in the context of one-loop lattice perturbation theory. The supersymmetry on the lattice is explicitly broken by the gluino mass and the lattice artifacts. However, the renormalization of the supercurrent can be carried out in a scheme that restores the nominal continuum WIs. The perturbative calculation of the renormalization constants and mixing coefficients for the local supercurrent is presented.Comment: Lattice2001(higgssusy); 3 page
    corecore