7,292 research outputs found

    Possible Magnetic Activity in the Low Mass X-ray Binary EXO 0748-676

    Full text link
    We report evidence of magnetic activity associated with the secondary star in the EXO 0748-676 low mass X-ray binary system. An analysis of a sequence of five consecutive X-ray eclipses observed during December 2003 with the RXTE satellite brings out a feature occurring during ingress we interpret as the X-ray photoelectric absorption shadow, as seen by an observer at Earth, of a plasma structure suspended above the surface of the secondary star. The light curve feature consists of an initial drop in count rate to near zero (the absorption shadow) with a very short rebound to a significant fraction of the pre-ingress count rate and then a final plunge to totality over a total time scale of ~25 s. The ingress feature persists for at least 5 consecutive orbital periods (a total of ~19 hr), and possibly up to 5 days in our data. Our data also show significant post-egress dipping during this eclipse sequence, unusual for this source, indicating possible secondary star mass ejection during this episode.Comment: Accepted by Astrophysical Journal Letters; 11 Pages including 3 figures and 1 tabl

    Unified Band Theoretic Description of Electronic and Magnetic Properties of Vanadium Dioxide Phases

    Full text link
    The debate about whether the insulating phases of vanadium dioxide (VO2) can be described by band theory or must be described by a theory of strong electron correlations remains unresolved even after decades of research. Energy-band calculations using hybrid exchange functionals or including self-energy corrections account for the insulating or metallic nature of different phases, but have not yet successfully accounted for the observed magnetic orderings. Strongly-correlated theories have had limited quantitative success. Here we report that, by using hard pseudopotentials and an optimized hybrid exchange functional, the energy gaps and magnetic orderings of both monoclinic VO2 phases and the metallic nature of the high-temperature rutile phase are consistent with available experimental data, obviating an explicit role for strong correlations. We also report a potential candidate for the newly-found metallic monoclinic phase and present a detailed magnetic structure of the M2 monoclinic phase

    Epitaxial Ferromagnetic Nanoislands of Cubic GdN in Hexagonal GaN

    Full text link
    Periodic structures of GdN particles encapsulated in a single crystalline GaN matrix were prepared by plasma assisted molecular beam epitaxy. High resolution X-ray diffractometery shows that GdN islands, with rock salt structure are epitaxially oriented to the wurtzite GaN matrix. Scanning transmission electron microscopy combined with in-situ reflection high energy electron diffraction allows for the study of island formation dynamics, which occurs after 1.2 monolayers of GdN coverage. Magnetometry reveals two ferromagnetic phases, one due to GdN particles with Curie temperature of 70K and a second, anomalous room temperature phase.Comment: 4 pages, 3 figure

    Numerical solution of the two-dimensional time-dependent multigroup equations

    Get PDF
    Also issued as a Ph. D. thesis in the Dept. of Nuclear Engineering, MIT, 1969"MIT-3903-1."Includes bibliographical references (leaves 60-61)Contract AT(30-1)-390

    Zinc-blende and wurtzite AlxGa1-xN bulk crystals grown by molecular beam epitaxy

    Get PDF
    There is a significant difference in the lattice parameters of GaN and AlN and for many device applications AlxGa1-xN substrates would be preferable to either GaN or AlN. We have studied the growth of free-standing zinc-blende and wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE). Thick (similar to 10 mu m) zinc-blende and wurtzite AlxGa1-xN films were grown by PA-MBE on 2-in. GaAs (0 0 1) and GaAs (1 1 1)B substrates respectively and were removed from the GaAs substrate after the growth. We demonstrate that free-standing zinc-blende and wurtzite AlxGa1-xN wafers can be achieved by PA-MBE for a wide range of Al compositions. (C) 2011 Elsevier B.V. All rights reserved

    Optical vernier technique for in-situ measurement of the length of long Fabry-Perot cavities

    Get PDF
    We propose a method for in-situ measurement of the length of kilometer size Fabry-Perot cavities in laser gravitational wave detectors. The method is based on the vernier, which occurs naturally when the laser incident on the cavity has a sideband. By changing the length of the cavity over several wavelengths we obtain a set of carrier resonances alternating with sideband resonances. From the measurement of the separation between the carrier and a sideband resonance we determine the length of the cavity. We apply the technique to the measurement of the length of a Fabry-Perot cavity in the Caltech 40m Interferometer and discuss the accuracy of the technique.Comment: LaTeX 2e, 12 pages, 4 figure

    Choice of Consistent Family, and Quantum Incompatibility

    Get PDF
    In consistent history quantum theory, a description of the time development of a quantum system requires choosing a framework or consistent family, and then calculating probabilities for the different histories which it contains. It is argued that the framework is chosen by the physicist constructing a description of a quantum system on the basis of questions he wishes to address, in a manner analogous to choosing a coarse graining of the phase space in classical statistical mechanics. The choice of framework is not determined by some law of nature, though it is limited by quantum incompatibility, a concept which is discussed using a two-dimensional Hilbert space (spin half particle). Thus certain questions of physical interest can only be addressed using frameworks in which they make (quantum mechanical) sense. The physicist's choice does not influence reality, nor does the presence of choices render the theory subjective. On the contrary, predictions of the theory can, in principle, be verified by experimental measurements. These considerations are used to address various criticisms and possible misunderstandings of the consistent history approach, including its predictive power, whether it requires a new logic, whether it can be interpreted realistically, the nature of ``quasiclassicality'', and the possibility of ``contrary'' inferences.Comment: Minor revisions to bring into conformity with published version. Revtex 29 pages including 1 page with figure

    Improving CAP-TSD steady pressure solutions through airfoil slope modification

    Get PDF
    A modification of airfoil section geometry is examined for improvement of the leading edge pressures predicted by the Computational Aeroelasticity Program - Transonic Small Disturbance (CAP-TSD). Results are compared with Eppler solutions to assess improvement. Preliminary results indicate that a fading function modification of section slopes is capable of significant improvements in the pressures near the leading edge computed by CAP-TSD. Application of this modification to airfoil geometry before use in CAP-TSD is shown to reduce the nonphysical pressure peak predicted by the transonic small disturbance solver. A second advantage of the slope modification is the substantial reduction in sensitivity of CAP-TSD steady pressure solutions to the computational mesh
    • …
    corecore