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ABSTRACT

A numerical algorithm for the solution of the two-dimensional time-
dependent multigroup neutron diffusion equations is presented. The
method assumes that the variation in the neutron flux at each mesh point
can be represented as an exponential function of time over each integra-
tion time step. Additionally, the assumption is made that the transverse
leakage in one spatial direction can be approximated by a pointwise
transverse buckling over one time step. These assumptions, together
with an appropriate factoring and integration of the matrix form of the
semi-discrete multigroup equations, produce a mathematically consis-
tent approximation and an unconditionally stable algorithm. It is also
shown that the asymptotic numerical solution is proportional to the
asymptotic eigensolution of the semi-discrete multigroup equations. The
experimentally observed truncation error is discussed and several
numerical experiments are presented which illustrate the accuracy and
utility of the method.
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CHAPTER I

INTRODUC TION

1. The Space-Time Multigroup Problem

An accurate description of the space-time behavior of the neutron

flux in a reactor is often necessary when localized perturbations are

present. Furthermore, when a perturbation affects some neutron energy

groups differentlysfrom others, the ensuing changes in the energy spec-

trum of the neutrons may often require a multigroup treatment to ade-

quately describe the behavior of the reactor. In fact, it has recently

been shown2 that few group kinetics can, in certain instances, lead to

considerable error in computing the time-dependent behavior of the

system.

The numerical solution of the two-dimensional, time-dependent,

few-group diffusion equations has been obtained by several methods. 3 ,'4

At present, however, the methods known to the author are either limited

to two neutron energy groups or are in some way restrictive in their

approximations made to obtain solutions in a reasonable amount of com-

puting time. Thus, there is motivation for developing a general method

for treating time-dependent mivltigroup problems in more than one spatial

dimension.

The purpose of this thesis is to present a multigroup, two-dimensional,

fine-mesh algorithm, which is an extension of the GAKIN 5 algorithm to

higher spatial dimensions.

In this chapter the multigroup diffusion equations are developed in

I qqo, . 1 11 PPPR .11 5 1101MMIR WO.1111 "ITIM IMIRMI.M.-MI " I 1 11 1
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matrix form and their reduction to the semi-discrete equations is also

given. The principal difficulties in obtaining a solution are discussed

and several contributions by previous workers are outlined. In Chap-

ter II the proposed method is derived and shown to be a mathematically

consistent approximation. Additionally, the method is shown to be numer-

ically stable, and to possess desirable asymptotic behavior. Several

refinements to the basic algorithm are also presented as well as a dis-

cussion of the determination of the free parameters. Chapter III con-

tains a number of results of numerical experiments for both bare homo-

geneous systems and also multiregion problems. Truncation error of

the method is also discussed along with the computer storage require-

ments and computation time. Chapter IV presents the general conclusions

regarding the method and also gives recommendations for further study.

2. Formation of the Matrix Form of the Time-Dependent i

Multigroup Equations

The time-dependent diffusion equations for each of the G neutron

energy groups may be written in the form

85 GI
=1 D V* - - + t *+ f .. C. + S,

v at - -g g g gg' g' gl 1 1
1g'=1i

(1,g<G) (1)

with

v the neutron group speed,

9 the neutron group flux,

D the group diffusion coefficient,
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o the macroscopic group removal cross section,
g

tg, the group transfer cross section (including scattering and
gg,

fission),

fgi the delayed neutron energy spectrum from decay of pre-

cursors,

X the precursor decay constant,

C the precursor concentration,

S the neutron group external source.

The time-dependent equations for each of the I delayed neutron precur-

sor groups may be written

dC. G
=i (v p: ) ,Va f ,g -g A C P , (1< ilI), (2)

g'=1

with (vcrpi)g, the yield into delayed group i from fission in neutron

energy group g! All of the quantities appearing in equations (1) and (2)

except ki, pi, and v may be functions of both space and time. Equa-

tion (1) describes the time rate of change of the neutron flux in the gth

energy group. The first term on the right-hand side of equation (1)

accounts for the leakage of neutrons out of a volume element. The sec-

ond term represents the net number of neutrons removed from group g

by either absorption or scattering to lower energy groups. The third

term collects the total contribution of neutrons into group g by fission

and scattering from all other energy groups. The next term gives the

delayed neutrons born into group g due to decay from all the pre-

cursor groups. The last term gives the contribution of neutrons into
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group g from external sources.

Equation (2) represents the rate of change of the ith precursor group

concentration. The first term on the right-hand side of equation (2) gives

the total production of precursors due to fission in all the G neutron

energy groups. The second term accounts for the loss of precursors

due to their decay.

Equations (1) and (2) may conveniently be written in matrix form

for all G neutron energy groups and I delayed precursor groups by de-

fining a G dimensional vector of all group fluxes as

2

g -

P

and an I dimensional vector of the precursor concentrations as

C =

C

C
2

CI

The set of equations (1) may now be written

v~ -- = (V - DV) x + (T-Z) x + F A C + Y
at - - -

(3)

I ...............
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with the G by G dimensional matrices

L

1

1
2

0 v G

DGL

' 1

t 2 1

t1G7
t 12

t 22 ~ 2

t G t - L
gg gJ

.9

and the G by I dimensional matrix

21

fif

* GI
LG1

3

-1 _

.D1

It 11 -
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and the I by I dimensional matrix

0X 1

X2

0 XI

The set of equations (2) may also be written in matrix form as

dC
= N=Nx -AC,

with the I by G dimensional matrix

(vo p)G(vop 1) 1

(vof p2 ) 1

(vofP1)i . . . (vo pY)G

2

and A as defined above. A generalized (G+I) dimensional vector of neu-

tron group fluxes and precursor concentrations may be written as

C

and equations (3) and (4) may be combined to form one matrix equation

d (
- = 0 e + R (5)
dt - -

(4)

. . .
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with the (G+I) by (G+I) dimensional operator matrix given as

v'[2_ - D2-+T - M] v F A

N -A

and the (G+I) dimensional source vector as

Y
R = ~

0

3. Reduction of Equations to Semi-discrete Form

The equations of the previous section may now be reduced to the so-

called semi-discrete form by making the spatial behavior discrete on a

mesh while leaving the time variation continuous. It will be assumed

hereafter that the reactor under consideration is a two-dimensional rec-

tangular slab in x-y geometry, although, in general, the algorithm to be

presented is by no means restricted to this geometry. The spatial deri-

vation in the x and y directions are approximated by standard finite dif-

ference relations. The V - D V operator at mesh point x, yk (1 kK,

1414L), is replaced by the second central difference operator,

6 D6 + 6 D6

h 2 h2
x y

where h and h are the mesh spacings in the x and y directions, re-
x y

spectively. This particular difference approximation is well known to

be accurate to order h and h in the interior of a material region
x y

where D is constant. In particular, the five point difference relation

at point k,1 is
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6D6*k,1 6 D6*k,1

2 2
h h

x y

1 (
- D - D + D

x22
1 1+ -11

11
+ D 1k-1 1 -D +

h y -1, k - 2 k- -- 1

1D k,1 1k1+ 1k,k1+ k,+j

D 1) *+k,1+ Dk+1, *

(6)

A new generalized KL dimensional vector representing the group flux or

precursor density is now defined for the semi-discrete equations as

4g'11

Ig'12

-gg

g'KL

*g' k, 1 is the flux value (or precursor concentration at the (k, 1) spatial

mesh. point. A stuper vector + containing all the vectors LP , may now

be formed and written as

11.1=

-1

-G+I

MIMI" 11 1".. ;11 I'll. . .1
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' is of dimension (G+I)KL and represents the flux values and precursor

concentrations at all the space points and energy groups.

Equation (5) can now be written in semi-discrete matrix form as

d$p
- = A LP + S, (7)
dt- -

with A a (G+I)KL by (G+I)KL dimensional matrix and S a (G+I)KL dimen-

sional source vector representing the neutron sources at each space point

for all energy groups.

S

S 11L

S1KL

- S211

SGKL

0

0

The matrix A appearing in equation (7) may be written as



11 A 1 2
. . . A 1G

A 2 1

AG 1 AGG

AG+1, 1

AG+I, 1
AG+I, G+I

where each submatrix Apq is a KL by KL dimensional square matrix.

The special form and the constituent elements of these submatrices are

described below.

A =v g
gg g

6D 6
g

h 2
_x

6D 6

h 2

y
gg - o- (1<g<G),

with block tridiagonal form.

A gg, = v t , g # g', (1<g, g'<G)

with diagonal form.

g, G+i g gi 1

with diagonal form.

AG+i, g = (va- p i)

with diagonal form.

A .i -. VG+i, G+i =

A

17

A 1, G+I

A

(1,<1,<I, 1,<g,<G),$

(1<is I., 14 g,<G),

(11<il<I),0
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with diagonal form.

AG+iG+i' = 0, i # i'., (1<i, i' <I)

with null form.

From the definitions of the elements of A, it is observed that, in

general, A is an irreducible matrix with all off-diagonal elements non-

negative and thus is an essentially positive matrix.6

4. Difficulties of Solution

The time-dependent semi-discrete multigroup equations have been

given in compact matrix form by equation (7). Several potential methods

of solution will now be examined and their particular relative merits

and shortcomings will be compared. Acceptable methods of solution

would be those that possess good truncation error, numerical stability,

and low cost of computation.

For the present analysis a step change in reactor properties will

be assumed; that is, the matrix A and the source vector S are consid-

ered constant with time. The step perturbation is not assumed to be

spatially or energetically uniform nor is the reactor assumed to be homo-

geneous. It can be easily shown for this situation that equation (7) pos-

sesses the analytic solution

(t) = exp(tA) 4(O) + A [exp(tA) - I] S (8)

where exp(tA) is defined as

22exp(tA) 21 t . (9)

.............. ............................................. .................................................

- -- --------
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The evaluation of the above expansion of the exponential to a sufficient

number of terms for convergence is prohibitively expensive; therefore,

approximate numerical methods are required. Over the time interval

h = t - t., the analytic solution given in equation (8) is simply

$(t ) = exp(hA) '(t ) + A 1 [exp(hA)-I] Si. (10)
- j+1 -j

The notation LP(tj+ 1 ) represents the exact value of the flux at tj+1 as given

by the analytic solution in equation (10), whereas LPJ+1 represents the

value of the flux at time tj+1 given by some approximate technique. The

solution to equation (7) may be approximately obtained by approximating

the series given in equation (9). One example is found by truncating the

series after two terms and is called the explicit method,

j+1 = (I+Ah) &i + h S (11)

Another approximation is obtained by replacing the series by the

inverse of the matrix (I-hA) and is referred to as the implicit method,

j+1 (-hA 1 [j+hSj]. (12)

Although both of these methods are mathematically consistent; that is,

accurate through order h in the expansion of the exponent in the exact

solution, it has been shown that the explicit method encounters grave

conditional stability requirements due to the large negative eigenvalues

of A. This results in necessarily taking very small time steps to obtain

any reasonably accurate solution at all, and renders the method imprac-

tical. On the other hand, although the implicit method may easily be

shown to be unconditionally stable, it has the computational disadvantage

- -------------- "I'll, I... - - I -- I I ............ awk.Abw ...........
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of requiring the inversion of a very large matrix. Additionally, if the

matrix properties change with time, then an inversion at each time step

is needed, and the method becomes computationally unfeasible.

It is evident that there is a tradeoff between numerical stability and

computational effort per step, and thus rapid semi-implicit methods are

needed for solution.

In the next section several methods by previous workers will be

briefly outlined and discussed.

5. Previous Methods

Before presenting the proposed method of solving the two-dimensional

time-dependent problem, a brief review of previous work will be pre-

sented. In addition to a well-known finite-difference approach several

other techniques in common use will be discussed.

One general class of methods of solving the space and time-dependent

problem is the flux synthesis 89 method. In this technique the flux,

*(r, t), is represented as

(r, t) = T ( , (13)

with 4.(r) known spatial shape functions and T (t) being the time-dependent

combining coefficients. Typically the spatial shape functions are computed

by some sort of static calculation and they should contain the necessary

components of the expected shape of the flux during the transient. This

type of treatment is particularly advantageous when a substantial amount

of knowledge of a particular system is available so that suitable shape
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functions may be obtained. If good shape functions are not known or

available, then the solution may contain considerable error unless a very

large number of expansion functions are included. An additional disad-

vantage is that synthesis functions that are used for one calculation may

be quite inadequate for another type of perturbation.

A variation on the above approach is the multichannel synthesis

technique.10 In this procedure an expansion is again used

$k(r,t) = Tik(t) *.(5), (k = 1, R)

with the time-dependent expansion coefficients different in each of the

R regions or "channels." This increases the number of unknowns to be

computed while allowing greater synthesizing power for the same num-

ber of synthesis functions as the single channel technique. Again, this

method possesses roughly the same advantages and disadvantages of the

previous method.

Another class of methods that is similar to the synthesis approach

is the modal method. 1 1 , 12 In this technique an expansion of the solution

in the same form as equation (13) is performed; but in this case the ex-

pansion functions are eigenvectors of some static operator, and are called

modes. This approach works well for certain problems but for very large

localized perturbations, it requires a large number of modes to accurately

represent the flux during the transient.

Another general category of solution techniques are those which do

not attempt to describe system behavior with functions that span the whole

reactor, but instead have assumed shape functions specified for each
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subregion. One variation of this class of nodal methods is the VARI-

QUIR4 algorithm. It assumes that the flux and adjoint can be adequately

represented by a biquadratic function in each subregion. The time-

dependent coefficients in each subregion are then determined by a vari-

ational principle. The method is reasonably attractive when the number

of regions necessary to give an accurate representation is small; how-

ever, this may not always be the case, especially for very large local-

ized perturbations.

The next method to be considered is a pure finite-difference

technique, and hence requires no expansion coefficients. The

TWIGLE3 algorithm is based upon an implicit difference scheme where

the weighting factors are chosen to minimize truncation error and im-

prove stability of the method. Again, the time-dependent equations are

written

d$

dt -

The semi-implicit TWIGLE approximation to the above equation is

j+1 - j = h[M$j+'+(A-M) IA],

where the elements of M are m= .. a.., and the 9 vary between zero

and one. The solution of the equation requires using appropriate weight-

ing coefficients . and inverting a matrix by iteration. Results for one

and two neutron energy group problems have shown TWIGLE to be a

rapid and accurate method; however, straightforward extension to the

multi-energy problem has not been performed.
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It may be concluded, therefore, from the previous discussions that

there is need for a general two-dimensional, multigroup, fine-mesh,

time-dependent algorithm.
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CHAPTER II

THE PROPOSED METHOD

1. The Pointwise Buckling Approximation

Thus far the original multigroup differential equations have been

reduced to a semi-discrete matrix equation which is written in the form

(14)
dt

with +i the solution vector, S the external source vector and A the square

matrix defined in the previous chapter. The matrix A can now be split

into five matrices of the same order and equation (14) becomes

d$
= (L+U+H+V+r) + S,

dt- -

with L a strictly block lower triangular matrix given as

0

A 2 1

A 3 1

0

0

A 3 2

AG+I, G+I- 1AG+I 1

U a strictly block upper triangular matrix given as

A 1, G+I

A G+I-1, G+I

0

(15)

0

0

A
1 2

0

0 A 2 3

LO

j
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and r, H and V block diagonal matrices given as

0r 1

AG+1, G+1

0

H1

0

Vi

AG+I, G+I_

0

H
2

HG

0

0-

V
2

VG

0

0 0

p

The KL by KL dimensional submatrices TFg H aand V are defined as

r 9
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6D 6

H = v - (1 g<G),
g g h

x

6D 6

V = v - -'

y

lg = v [tgg -- ] 1g<G),

and therefore

A = H + '+ V.
gg g g g

All the above submatrices are diagonal except the H 's and the V 's,

which both contain three stripes. Depending on how the unknowns are

ordered in the solution vector, either H or V is a tridiagonal matrix;

and for the present purposes it will be assumed that H is the one with

tridiagonal form.

The integration of equation (15) may be accomplished by making a

simple approximation which yields a stable numerical algorithm. The

diagonal matrix Q is defined such that over one time step

Q L = V $. (16)

This approximation corresponds to replacing the transverse leakage in

the vertical direction by an effective pointwise buckling. It must be

pointed out that, in general, Q changes with each time step and must

be continually recomputed. Note that when the system has achieved an

asymptotic shape this approximation becomes exact since the vertical

leakage does not change with time. ,With the definition of a new diagonal
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matrix

G =r+Q, (17)

equation (15) becomes

dt
-j- - G * = (L+U) ++ H LP+ S, (18)

which is now suitable for integration. It will be assumed for simplicity

in the subsequent integration that S is independent of time, although this

assumption is not necessary.

2. Integration of Approximate Equations

Assuming all the matrix elements in equation (18) are constant over

the time interval h = t. - t., then the equation may be integrated using
j+1

the integrating factor e-Gt, giving

$j+1 = exp(Gh) + h d exp[G(h-t)](L+U) 4(t.+t)
0 3

Ch1
+ h dt exp[G(h-g)] H _$(t.+t) + G~ [exp(Gh)-I] . (19)

0

To proceed, some assumption must be made concerning the behavior of

$(t.+0 over the time interval h. For the moment, let it be assumed that

the reactor is bare, homogeneous and uniformly perturbed. This assump-

tion is not really necessary but is only used here so that the following

derivation may be easily written in matrix form. It is now reasonable

to suggest that over the time interval the flux will vary exponentially

with time, that is,

- ........i.....1..
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= exp(og) 4', (20)

and

+= exp[-w(h-g)] (21)

with w a scalar quantity that is chosen at each time interval to reduce

the truncation error. The selection of this parameter and its generali-

zation to a diagonal matrix will be discussed in section 4 of this chapter.

Integration of equation (19) may now be performed using equation (20)

for LP(tj +) in the first integral of equation (19) giving

yhd exp[G(h- )](L+U) exp(og) 3
0

= eGh(L+U) , d exp[(wI-G)(]

= (WI-G)~ - [exp(wIh) - exp(Gh)](L+U) V1. (22)

The second integral in equation (19) can be performed using equation(21)

for (t +t) and gives

h dt exp[G(h-)]exp[-w(h-t)] H j+1
0

= exp[(G-OI)h] 5 h dt exp[(-G+)] H j+1
0

= (wI-G) [I - exp[(G-wI)h] H Lj+1. (23)

Using the results of the integrals given in equations (22) and (23), equa-

tion (19) becomes
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[I-(wI-G)~ {I - exp[(G-wI)h]} H] pj+1

= [exp(Gh)+(wI-G) 1(exp(whI) - exp(Gh)}(L+U)] i)+ G~ 1 [exp(Gh)-I] Sj

(24)

or more simply,

F 1 j+1 = F2 q, + F 3 -, (25)

where the definitions of F 1 , F 2 and F 3 are evident from equation (24).

3. Numerical Properties of the Algorithm

The algorithm expressed in equation (24) may now be analyzed to

determine its numerical stability, consistency and computational char-

acteristics.

Stability will first be investigated by expnining the three F matrices

appearing in equation (25). The matrix F is tridiagonal and may be

partitioned in the form

E
2

2 0

F =

E G

0

with each E (1<g- G) a KL by KL dimensional tridiagonal matrix. The

unit matrix I has dimensions IKL by IKL and represents the precursor

concentration equations. A representative diagonal element of an E
g

submatrix is
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(G -o)h 2 D v

w -G 2 '

while a representative off-diagonal element can be written

e(G 9-W)h -D v

The common multiplicative factor

L (G g-o)h

W - Gg

for both the diagonal and the off-diagonal terms is always non-negative

since if (G -C) is positive both the numerator and denominator of the

above expression are negative and likewise if (G -o) is negative the

numerator and denominator are both positive. Therefore, the diagonal

elements of each E submatrix are always positive and the off-diagonal

elements are always non-positive. Additionally, it is apparent that each

submatrix is diagonally dominant and thus each E g possesses a positive

inverse.13 It may easily be shown that the entire matrix F consequently

possesses a non-negative inverse. Furthermore, it can be easily seen

from the definitions that the matrices F 2 and F 3 are also non-negative.

So equation (25) becomes

LIj+1 = F1 F 2- + F1 F 3 (26)

or more concisely

j+1 
= B $. + P Si (27)

- v - v -

............................ ..............
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where the definitions of B and Pv are obvious from equation (26). In

addition to being non-negative, B is also readily seen to be irreducible

and since it has positive diagonal entries it consequently is also primi-

tive. From these properties of the matrix B the algorithm is numer-

ically unconditionally stable in the sense that for all reactor properties

and integration time step sizes, the solution vector will always be non-

negative and can therefore never oscillate in sign. Additionally, by the

theorem of Perron and Frobenius, 1 5 By possesses a positive, real simple

eigenvalue p0 , equal to its spectral radius, and a corresponding positive

eigenvector. For the case of a step change in reactor properties, suc-

cessive operation of B on a solution vector repeatedly reduces all com-

ponents of the solution along the directions of the eigenvectors corre-

sponding to the smaller eigenvalues until the single eigensolution remains.

That is, the asymptotic solution is exactly proportional to the eigenvector

corresponding to the largest eigenvalue of Bv'

The subscript v appearing on the advancement matrix B indicates

the transverse buckling approximation was made in the vertical direction.

However, a derivation entirely equivalent to that which led to equation (27)

may be performed to obtain an advancement matrix BH and a PH, using

an approximation of the pointwise transverse leakage in the horizontal

direction. These matrices may then be used to compute the solution vec-

tor at the next time step, that is,

Pjtk2 = BH j+1 + PH j+1 (28)

Equations (27) and (28) taken as a continuous alternation scheme, when

combined with the selection of the free parameter w, are used to minimize
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the truncation error of the method.

So far in the preceding discussions nothing has been said about which

values of the flux over the time step h are used in the calculation of the

transverse buckling in the matrix Q of equation (16). As a first approx-

imation it will be assumed that Q .during the interval of time from

step j to j+1 will be just those values computed using the flux at time

step j; that is, the transverse buckling matrix Q will be constant over

the time step h and equal to that value at the beginning of the interval.

Using this method of calculating Q, it will now be shown that the algor-

ithms of either equation (27) or (28) are mathematically consistent approx-

imations; that is, they agree with the exact solution LPj+1 = eAh 4jthrough

at least the order h term in the expansion of e Ah. This will be accom-

plished by simply letting the advancement matrix B v operate on the solu-

tion vector J3. Using the form of equation (24) without sources

B $ =[I - (oI-G)~1 ( - e(G-wI)h) H]1
v-

[eGh +(I-G)~ (ewIh - eGh)(L+U)] .

Expanding the exponentials and noting that since consistency is shown in

the limit as h is taken arbitrarily small, the inverses may also be ex-

panded, there results

Bv + = I+h{H+G+L+U}+ h2 1 1 H

+ -GH+HG+ G + -(L+U) + H(L+U)} + .. . (29)
2 2 2 I

Now recalling that

.............. ......... ---------------------- ...............
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V = Q Lp

and

G LPJ V _j+

equation (29) may be written

ByqA = [I+h(H+V+r+L+U)+ 0(h2 4 j,

or

By__ = [I+hA+ 0(h2 )] qj. (30)

It is now quite apparent that the expanded form of the algorithm in equa-

tion (30) does in fact agree with the exact solution through terms of

2
order h and thus has truncation error of order h

The algorithm can now be checked for its consistency and truncation

error in the source term of equation (24). Expanding the second term

on the right-hand side of equation (24) through order h2 gives

Ih+h2(H+D- +o(h3) ]j. (31)

The second term on the right-hand side of the exact solution in equa-

tion (10) is also expanded, yielding

Ih+ h 2 + O(h]3 j, (32)

which is easily seen to agree with expression (31) through order h; and

2
so the source term has a truncation error of order h

The asymptotic properties of the algorithm will now be examined

for the case of a step change in reactor properties with no external

sources present. The governing matrix equation is again



34

d*
dt-= -A L, (33)

where A is an essentially positive matrix and thus has a largest real

eigenvalue w0 . Since A is not a function of time, the analytic solution

may be expanded in terms of the eigenvectors u of A as

W t
4(analytic) = an e n u , (n = 0, 1... (G+I)KL -1) (34)

n

where the won are the corresponding eigenvalues. It is clear that asymp-
W t

totically the presisting solution is a0 e 0 u where o is the largest

eigenvalue of A. To examine the asymptotic properties of the numerical

algorithm, the effect of operating with the advancement matrix By on

u must be determined. So,

B u = [I - (wI-G) (I - exp[(G-oI)h]} H]~
v -0

[exp(Gh) + (wI-G) ~{exp(wIh) - exp(Gh)} (L+U)] u . (35)

Since

Au =o u (36)

or, equivalently,

(L+U) u = (w 0I-G-H) u , (37)

then equation (35) may be reduced by using equation (37) to give, when

W = , the form

B-u = [I1-G,) {I - exp[(G-o 0 I)]} H]' [exp(Gh) + exp(wohI)

- exp(Gh) - (w0I-G)~ (exp(c 0hI) - exp(Gh)} H] u . (38)
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Since exp( 0 hI) is a constant diagonal matrix, and thus commutes with

all other matrices, it may be factored out of equation (38) to yield

B u = exp(o hI) g. (39)

So it is found that exp( 0 hI) is an eigenvalue of the advancement matrix

B and u is its corresponding eigenvector when the free parameter o

is set equal to w9. To show that this is indeed the asymptotic solution

it is necessary to verify that the eigenvalue exp( 0 hI) is the largest

eigenvalue of Bv'

It is first assumed that p0 = exp( 0hI) is not the largest eigenvalue

of B v, then a contradiction will be found. The eigenvalues and eigen-

vectors of B arev

BT v* * v (40)v -n n --n

where B is the transpose of the matrix B and p are the eigen-
v v n

values of both B and B . B is also easily shown to be non-negative,v v v

irreducible and primitive, and so the Perron-Frobenius theorem in-

T
sures that B also possesses a largest simple eigenvalue pk such thatv P

T * *
v- k = Pk k'

Multiplying equation (39) by and equation (41) by u and subtracting

the results gives

(*\T TT* /* \T T *
k By -u By k vk) Ih) u u Pk Lk

or
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T T. T T T
Bvu -Bu = exp(Wh) v*) u -Pk( k u ).

Since all the terms in the above equation are actually scalar quantities,

then the two terms on the left-hand side cancel to give

0 = [exp(o0h) - pk] ( .) (42)

Since v and _u are both positive vectors, equation (42) requires that

Pk exp( o h). This obviously violates the original assumption that po

is not the largest eigenvalue since Pk = Po'

So it is established that the numerical asymptotic solution is exactly

proportional to the analytic asymptotic solution when the parameter w

is chosen equal to w0.

The proposed algorithm has been shown to be mathematically con-

sistent, numerically stable, and to possess desirable asymptotic behav-

ior. In the next section several modifications to the basic method will

be presented and the selection of the free parameter o will be described.

4. Additional Refinements to the Algorithm

Before describing the technique for selecting the free parameter W,

several modifications of the basic method will be presented.

Since all the energy coupling between neutron energy groups is

handled explicitly in the algorithm, the inversion of the matrix F in

equation (26) is really accomplished by inverting independently the G tri-

diagonal matrices that constitute F 1. Thus, in computing the fluxes at

each time step, the group fluxes are calculated successively one after

"I'll" -..........
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another from highest energy to lowest, always using the old values of the

flux on the RHS of equation (26). Another procedure might be to use the

most current values of the flux computed in the higher energy groups

when computing the neutron flux in some lower group g. A third pro-

cedure,16 which might be epxected to be more accurate than either,

would be to use some weighted average of the new and the old values.

In this case the matrix A is split in the form

A = G + [(1-a)L+U] + [aL+H]

with a a constant weighting factor whose value is between 0. 0 and 1. 0.

A derivation identical to that of the basic method yields an algorithm of

the form

[I - (wI-G) {I - exp[(G-wI) h]} H] j+ 1

= exp(Gh) + (oI-G) -exp(whI) - exp(Gh)}.

-[(1- a) L + U] Lj+ exp(-whI) a L j+ 1} + G [exp(Gh) - I] Si.

(43)

The modified algorithm given in equation (43) retains all of the previously

mentioned properties of the original algorithm and has been found to give

slightly smaller truncation error in large step change problems. The

value a = seemed to give a near optimal weighting.

A second modification to the basic method involves the use of a single

free parameter o. This could obviously be restrictive since the flux in

different regions of the reactor may respond at different rates to a local-

ized perturbation. This modification involves using a diagonal matrix i,

of pointwise free parameters. For the purposes of integrating
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equation (19), the fluxes are now assumed to behave as

(t + = exp(g G)) 4

and

+ = exp[ -(h- ) 2] j+1

Since exp(i ) is no longer a constant diagonal matrix, i. e. , a scalar,

it does not commute with the matrices H, L or U, and so equation (19)

must be integrated term by term. When the integration is performed

the final form of the algorithm becomes

I - ( -G )~ [1-exp(G - )h] Hj+1
gr op op qr pq 1

p q

= exp(Gh) $J + (qr -G op)

p q

- [exp(S qh) - exp(G h)] [(1-a)Lpq +U q $

+ (qr -G )~ [exp(2 h)-exp(G h)](aL ) $j+1
gr op gr op pq -

p q

+ G I[exp(Gh) - I] SJ, (44)

where the braces indicate a matrix whose o, rth element is given by the

indicated summations over p and q. The final form of the algorithm

may be written in abbreviated form as

j+1 = B' (0) $) + Y S(5 (45)
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where B'(Q) is again non-negative and possesses all the previously men-

tioned matrix properties as B *. This form of the method would allow
v

the use of a different Q. at each space point and in each energy group.
I17

It has been shown 7 that for thermal reactors only the spatial frequen-

cies in the thermal controlling group are necessary for acceptable accu-

racy. However, in a fast reactor where the importance of the energy

groups is more equal, it may often be necessary to use group depen-

dent as well as space dependent frequencies in the very early part of a

transient. The results quoted in Chapter III are principally for the

thermal systems, hence the spatially dependent frequencies in the ther-

mal group are also used for the other energy groups.

A final modification of the algorithm involves the calculation of

the matrix Q, which contains the pointwise transverse bucklings. It

would seem likely that the best values of the pointwise bucklings would

be those computed using some weighted average of the bucklings at the

beginning and at the end of the time interval h, that is,

Q = w Qj + (1-w) Qj+1, (46)

with

Qj+1 j+1 = V j+1

and w assuming a value between 0. 0 and 1. 0. If the reactor flux shape

does not change with time as in the case of an asymptotic reactor or a

uniformly perturbed bare homogeneous reactor, then Q = Qj. In

general, however, Qj+1 may be computed from the second expression

I gr P', , 1111
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j+1 Uh jabove by approximating k+ by e $h, so that

gj+1 eh j V h j

Thus an improved weighted value of Q may be evaluated from equa-

tion (46), at least approximately, when Qj is not equal to Qj+.

5. Determination of Free Parameters

To determine the free parameters initially, some estimate of each

, is chosen. These estimates are then used in equation (45) to ad-
Qk,

vance the solution one time step. A check is then made to determine if

the flux in a specified control group did, in fact, change exponentially

with time as assumed. That is, if the expression

exp(2j h) - + j I < tolerance, (47)
r, s r, s r., s

is satisfied for the flux values in the test group at all test points (r, s).

If so, then new values of the free parameters are calculated from

2j+ 1 = 1 ('j+1 1 1 1j (48)

and these values are used in equation (45) to advance the solution to the

next time step.

If relation (47) is not satisfied for all test points, new values of the

Q1 are calculated at every point from equation (48) and the time step is

repeated. This method of determining the free parameters converges

rapidly in most cases, and in many instances iterations are not required

at each time step. However, this technique of obtaining the frequencies
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has not been proven to converge always and may quite probably be im-

proved upon.
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CHAPTER III

NUMERICAL RESULTS

1. Preliminary Remarks

A variety of numerical experiments have been carried out in order

to test the accuracy and speed of the method. The observed truncation

error is primarily controlled by the allowed flux change per time step

and by the magnitude of the tolerance specified in relation (47). The

flux change per time step is given approximately by the product of the

largest frequency, max , and the time interval h. For the best oper-

ating conditions of the method, it was found that the percentage change,

Omax h, should not exceed about 1% except when the system is nearing

an asymptotic behavior. With this percentage change per time step and

a tolerance about 100 times smaller, i. e., 10~4, all the transients

analyzed could be described with an accuracy of 2% or less over a flux

change of a factor of 10. To obtain greater accuracy, one would merely

reduce the time step size, hence the percentage growth, and corre-

spondingly reduce the tolerance.

The efficiency of the method is defined as the number of accepted

steps divided by the number of attempted steps, where the acceptance

of a step is determined by whether relation (47) is satisfied. During

the very early part of rapid transients, when the frequencies change

rapidly with time, the efficiency may often be as low as 20 to 30%. How-

ever, as the transient progresses, the efficiency rises rapidly until the

over-all efficiency for a transient run to asymptotic may be 60% or

0 11"', 'M"'T'm -1 1 1 - I _'_



43

more. In the code used to compute the results quoted here, the time

step h was allowed to increase as the efficiency of the algorithm in-

creased. Following reactivity insertions, it was found that the time

step h could be sizably increased as the system neared asymptotic

behavior. Since the asymptotic frequency o and the shape are exactly

correct, then after the system reaches asymptotic no additional error

is accumulated for even very large time steps.

In reporting the number of calculational steps for the following

results, the total number of attempted steps has been recorded and the

flux values at the center of the reactor are given.

2. Bare Homogeneous Problems

The results for several bare homogeneous reactors perturbed by

uniform step changes are presented. Solutions using the proposed al-

gorithm are compared with an analytic solution obtained by finding the

eigenvalues and eigenvectors of the matrix A and expanding the initial

conditions as given in equation (34). Figure -1 gives the reactor geom-

etry and the pertinent nuclear data for the two and four group critical

systems. In all of the problems a mesh spacing of 15 cm was used and

there were 11 mesh points in each spatial direction, i. e. , a total of

121 mesh points. Table I gives the results for four Two-Neutron Group

and One-Delayed Group problems. There are supereritical-problems of

+40O and+80', a subcritical problem of about -50, and a prompt critical

one of about $1. 20. These correspond to changes in the thermal capture

cross sections of -. 0000169, -. 0000369, +.0000231, and -. 0000569. Also

shown in Table I are the tolerances used and the total computer time
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TABLE I

NUMERICAL RESULTS FOR TWO-GROUP, ONE-DELAYED CASES

p = + 4 0 EP1 = . 2 X 10~4  p = +80, EP1 = . 4 X 10~4

Time Steps Flux % Error Time Steps Flux % Error
(sec) (sec)

.000 0 .382 0.0 .000 0 .382 0.0

.050 83 .444 0.2 .040 80 .503 0.2

.214 230 .555 0.4 .100 135 .672 0.6

.963 402 .644 0.8 . 207 222 .935 1.1

2.74 462 .692 0.1 .444 331 1.403 1.8

running time = 220 sec running time = 164 sec

p = - 50 EP1 .2 X 10~4  p $1. 20 EP1 .4 X 10~

Time Steps Flux % Error Time Steps Flux % Error
(sec) (sec)

.000 0 .3823 0.0 .000 0 .382 0.0

.020 46 .3487 0.1 .027 57 .516 0. 2

.060 126 .3050 0.2 .074 135 .777 0.3

.130 221 .2700 0.3 .154 208 1.302 1.0

.324 323 .2509 0.3 .381 337 3.684 2.2

running time = 152 sec running time = 153 see
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required on the IBM 360/65 computer, including the printing of the re-

sults. For each of these problems only the thermal flux is given in

Table I, since it was found that the errors in the fast group fluxes were

almost identical.

Table II shows the results for a Two-Group, Six Delayed-Group

2
problem with about +80 reactivity (6 c= -. 0000369) and also a Four

Group, One Delayed-Group problem with about +500 reactivity (6v =

.01171). The Four Group problem is a fast reactor experiment as is

evident from the very rapid prompt jump. In the Two-Group problem

the thermal flux is reported, and in the Four-Group problem the third

highest energy group is given. Again, for both problems, the flux values

are at the geometrical center of the reactors and the errors in the fluxes

and the precursors for all groups were about the same as the group

quoted.

TABLE II

NUMERICAL RESULTS FOR TWO-GROUP AND FOUR-GROUP CASES

G=2,I=6,p=+80g EP1=.4X10~4  G=4,I=1, p=+50 EP1=.4X10~4

Time Steps Flux % Error Time Steps Flux % Error
(sec) (sec)

.000 0 .3823 0.0 .0000 0 1.006 0.0

.040 71 .503 0.3 .0003 120 1.412 0.6

.123 155 .733 1.0 .0006 170 1.738 0.6

.325 270 1.227 1.3 .00096 241 2.013 1.0

1.037 418 2.974 3.0 .00193 341 2.421 2.0

running time = 274 sec running time = 307 sec



47

3. Temporal Truncation Error Analysis

In order to obtain a correlation between the temporal truncation

error of the algorithm and the allowed maximum fractional change

in the flux per step, the Two-Group, One-Delayed +80Q reactivity

case was run for several choices of the ma h and the corre-

sponding tolerances. Figure 2 shows that roughly a linear rela-

tionship exists between the percentage error and the allowed

fractional change per step. This indicates that the truncation

error is quite predictable and reasonably good for substantial

fractional growths per time step.

4.0 -

3.0 -

error 2.0

1.0

0.0

.008 .016 .024 .032

Q h
max

(fractional growth)

FIG. 2.

Percentage error at 0. 2 sec for +80g reactivity.
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4. Non-Homogeneous Problems

Numerical experiments are also presented for non-homogeneous,

non-uniformly perturbed reactor systems. In these problems not only

does the energy spectrum change with time, but also the spatial varia-

tion of the fluxes and precursors changes during the transient period.

In the first set of non-homogeneous problems, the dynamics of a

square multiregion reactor is investigated. Figure 3 illustrates the

geometry of the reactor and shows 441 spatial mesh points in a square

array with a mesh size of 8 cm in each direction. Also shown are the

three different material compositions which are numerically denoted in

their respective regions. The nuclear data given in Figure 3 for each

material composition are those that yield an exactly critical system.

These data are pertinent since the reactor was initially critical at the

beginning of the three transients investigated. The results of these

problems are given in Table III, where the flux values given are those

at the geometrical center of the reactor. For all of the problems, two

neutron energy groups and one delayed group were used in the calcula-

tions. The numerical results are compared with the TWIGLE3 code

and the errors quoted in Table III are the maximum percentage errors

across the core, between the proposed method and the TWIGLE results.

In the first problem, the reactor was driven by a step change of

-. 0035 in the thermal capture cross section in the geometric regions

containing material composition 1 as shown in Figure 3. It is noticed

from this result that the flux value almost doubles in the first 0. 02 sec-

onds, yet only increases by a small percentage in the next 0. 01 seconds.

This behavior is quite typical of step change problems; that is, the flux
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TABLE III

NUMERICAL RESULTS FOR SQUARE NON-
HOMOGENEOUS CASES

G = 2 1 = 1 p ~ +50 EP1 = .8 X 10

Time Steps Flux %6 Error
(sec)

0.00 0 16.75 0.0

0.01 268 27.29 2.2

0.02 372 31.48 2.2

0.03 456 33.06 2.0

+step, running time = 819 sec

G = 2 1 = 1 p ~ +50c EP1 .8 X 10 4

Time Steps Flux %6 Error
(sec)

0.00 0 16. 75 0.0

0.10 238 21. 73 0.1

0.20 386 32.49 0.3

0. 30 600 34. 83 1. 7

0.45 622 35.38 1. 7

+ramp, running time = 1097 sec

G = 2 1 = 1 p = -$ 4 . 00 EP1 = .8 X 10~

Time Steps Flux % Error
(sec)

0.000 0 16.75 0.0

0.004 206 13.55 1.1

0.008 300 8.95 1.1

0.012 440 6.46 0.7

-ramp, running time = 796 sec
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undergoes a prompt jump at first and then it approaches its asymptotic

period in a much slower manner. It was found that the operating effi-

ciency of the method was lowest at the very beginning of step change

problems, that is, where the frequencies change very rapidly with time.

However, after a very short initial period, the efficiency rose very

rapidly.

In the second problem, the reactor was driven by a linear decrease

with time in the thermal capture cross section in the regions containing

composition 1. The total reactivity inserted was approximately +50,

during a ranmp lasting 0. 2 seconds. Following the ramp, the capture

cross section assumed the value at 0. 2 sec for the remainder of the

transient. The thermal flux is reported out to 0. 45 seconds of reactor

time and is also compared to a TWIGLE solution. Throughout the entire

transient period the thermal flux values of the two methods agreed to

within 1. 7% at every point in the reactor.

In the third problem, the reactor was driven by a ramp change of

+0. 03 in the thermal capture cross section for 0. 02 seconds in the re-

gions containing material composition 1. This problem corresponds

to a rapid shutdown since the reactivity insertion is several dollars

in 0. 02 sec. As is seen in Table III, the flux value drops by a factor

of almost 3 in about a hundredth of a second. The percentage error

difference from TWIGLE is observed to be no more than 1. 1% across

the core during the transient.

The running times for these three problems on the IBM 360/65 are

given in Table III. The corresponding TWIGLE running times on the

CDC 6600 computer were 210 seconds for the positive step insertion,
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470 seconds for the positive ramp problem and 120 seconds for the nega-

tive ramp problem. Taking into account that the CDC 6600 is approxi-

mately a factor of 4 faster than the IBM 360/65, it is observed that the

speed of the algorithm is at least comparable to TWIGLE, and for the

positive ramp problem the proposed algorithm is twice as fast. The

principal advantage of the method, however, does not lie in its ability

to solve two group problems markedly faster than TWIGLE, but in its

ability to treat multigroup problems with a minimal increase in compu-

tation time.

The next non-homogeneous reactor problem to be considered is an

oblong reactor with no symmetry in any spatial direction. The lack of

symmetry is necessary to insure that the transverse buckling approxi-

mation discussed in Chapter II is not seriously jeopardized when the

reactor system does not have any symmetry.

The geometry for this oblong reactor is given in Figure 4 as well

as the nuclear data for the critical system. The reactor is twice as

long as it is wide and contains 231 spatial mesh points, 11 down one side

and 21 down the other, with a mesh spacing of 8 cm in each direction.

Also shown in Figure 4 are the 4 different material compositions which

are numerically denoted in their respective regions. Composition 1 is

a high fuel concentration region, composition 2 is a lower fuel concen-

tration region and compositions 3 and 4 are regions containing pure water.

Four neutron energy groups and one delayed group were used for the cal-

culations. It is quite obvious, and it was actually observed that the spa-

tial distributions of the fluxes for the different energy groups were radi-

cally different, thus indicating a high degree of space-energy non-

separability.
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FIG. 4.

Oblong non-homogeneous reactor.
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The reactor was driven by a linear change of -. 003 in the thermal

capture cross section over 0. 2 seconds in the region containing material

composition 3. After 0. 2 seconds the cross section remained constant

at its value at 0. 2 seconds. The results are given in Table IV for two

runs of the same problem using different initial time steps and different

tolerances EP1. Table IV gives the flux values for the highest energy

group and the lowest energy group for two selected points in the reactor.

Point (12, 3) denoted by a plus sign (+) in Figure 4 is exactly in the cen-

ter of the driven region and point (3, 9) denoted by a zero (0) is in the

corner of the high fuel concentration region.

It is first observed that the two runs using different values of the

step acceptance tolerance EP1 are fairly close. The maximum per-

centage difference between the two runs in any group across the entire

core during the transient was less than 2%. For the pruposes of the

following discussion the results using the smaller value of EP1, that

is, the more accurate run, will be referenced. This problem provides

an excellent example of the space-time non-separability of the flux. For

example, the thermal flux (Group 4) at space point (12, 3) grew about

50% over the time period investigated, whereas the thermal flux at

point (3, 9) grew only by about 13%. The reason the effect is so pro-

nounced is that the driven region is quite small and consequently the

effect of the perturbation is felt most acutely in the area at and around

the perturbation. The space-time effect is also observed in the fast

flux (Group 1); the flux at point (12, 3) in the driven region grew by 20%,

whereas the fast flux at point (3, 9) in the fuel grew by about 15%. The

effect for the fast flux is less dramatic as could be expected since the
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TABLE IV

NUMERICAL RESULTS FOR OBLONG, NON-HOMOGENEOUS CASE

G =4 =1 p +30 ramp EP1 = . 8 X 10~ 4

Space Point (12, 3) Space Point (3,9)

Time Steps Group 1 Group 4 Group 1 Group 4
(sec)

0.00 0 .1341 .968 .4463 .0359

0.05 80 .1385 1.056 .4569 .0368

0.10 112 .1453 1.166 .4730 .0381

0.15 144 . 1499 1.278 .4830 .0389

0.20 168 .1551 1.410 .4943 .0398

0.30 208 .1605 1.451 .5123 .0412

running time = 362 sec

G =4 I=1 p ~ +30c ramp EP1 = 1. 6 X 10~ 4

Space Point (12, 3) Space Point (3, 9)

Time Steps Group 1 Group 4 Group 1 Group 4
(sec)

0.00 0 .1341 .968 .4463 .0359

0.05 66 .1379 1.051 .4540 .0366

0.10 98 .1443 1.164 .4703 .0379

0.15 122 .1505 1.285 .4856 .0391

0.20 144 .1570 1.427 .4999 .0402

0.30 172 .1635 1.479 .5214 .0419

running time = 306 sec
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perturbation was made in the thermal capture cross section in the pure

water region.

It was not possible to compare the results of this problem with

TWIGLE since the TWIGLE code can only handle two neutron energy

groups. However, the two runs of the same problem with different ii,-

tial time steps and step acceptance tolerances indicate the results are

probably accurate to within a couple of percent. Arbitrarily fine accu-

racy could be achieved by shrinking the time step size and the tolerances.

5. Scaling Laws and Storage Requirements

Table V gives the experimentally observed computing time of the

algorithm per time step on the IBM 360/65 for several different combi-

nations of the number of spatial mesh points N, the number of neutron

COMPUTING

N

121

121

121

441

231

C alculation

TABLE V

TIMES PER STEP FOR VARIOUS

CONFIGURATIONS

G I Seconds/Step

2 1 .46

2 6 .65

4 1 .90

2 1 1. 75

4 1 1.75

Time as a Function of N, G and I.

energy groups G and the number of delayed groups I. From this table,

an empirical formula is found that gives the calculation time per step

as a function of these variables. The relation was found to be

.0018N(G+.15I) seconds/step
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for the IBM 360/65 computer. For example, a 10, 000 mesh point,

4 neutron energy group, 6 delayed group calculation would take 88 sec

per step on an IBM 360/65 or about 22 sec/step on a CDC 6600. Recall-

ing that several hundred time steps would be sufficient to treat almost

any transient, the total CDC 6600 time would be about 2 hours.

The basic storage requirements for the algorithm are as follows.

Two solution vectors are needed for 2N(G+I) locations. Four auxiliary

vectors of NG locations each are required as well as 6 vectors of dimen-

sion N each. Additional storage requirements for other arrays are

negligible. The program itself requires 80, 000 bytes or 20,000 32 bit

words. Thus for the 10, 000 mesh point 4 energy group, 6 delayed group

problem, 420, 000 words of storage would be necessary. If IBM 360

equipment is used, slightly more storage would be necessary since the

32 bit word size necessitates the use of some double precision.



58

CHAPTER IV

RECOMMENDATIONS AND CONCLUSIONS

1. Conclusions

It is apparent from the results given in the previous chapter that

the proposed method is capable of handling a variety of time dependent

problems. In addition, the method has been shown to be mathematically

consistent and unconditionally stable. Furthermore, it has been shown

to yield an asymptotic shape identical to the asymptotic chape of the

exact solution of the semi-discrete equations.

The selection of the frequencies by the method of successive sub-

stitution, however, is known to not always be a contraction. It remains

to be shown under what condition the frequency selection iteration always

converges, and if there exists, in fact, a superior selection technique

that can be shown to always be a contraction.

From the numerical experiments, it has been demonstrated that the

proposed method is at least as fast as the best fine mesh method reported

and that its computation time for multigroup problems is only linearly

related to the total number of neutron energy groups. Its principal ad-

vantage, therefore, is that it allows economical computation of full mul-

tigroup fine-mesh time-dependent problems.

2. Recommendations

Three recommendations for further work are seen. The first in-

volves accelerating the convergence of the frequency determination when
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a time step fails during periods of rapid frequency change. This could

be accomplished by some extrapolation or overrelaxation technique.

The second recommended area of study involves determining under

what conditions the frequency iteration scheme always converges, and

the implementation of improved frequency selection techniques.

The third area involves the direct extension of the method to three

spatial dimensions.
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APPENDIX A

Description of Computer Program

The algorithm given by equation (45) was programmed in the FOR-

TRAN IV language18 for use on the IBM 360/65/40 computer system.

Figure 5 is a flow diagram of the principal logic of the program.

Of the four large rectangular computational blocks shown in the figure,

only the determination of equilibrium flux and precursors and the calcu-

lation of a new time step size have not yet been discussed. Both of these

parts of the program will be discussed here in detail.

To find the steady state or critical flux and precursor distributions,

the solution vector LI must be found from the equation

A += 0, (49)

s-1

where As V 1 A, and A is the same semi-discrete matrix used in

equation (7). Equation (49) may be solved by constructing an appropriate

iteration procedure. A may be split into 5 matrices, in the same man-

ner as A was in Chapter II, giving

(H+v+r+L+U) = 0. (50)

Now an iteration may be constructed yielding

-(H+V+r) tj+ 1 = (L+U) IA. (51)

The above iteration may be slightly modified by introducing, as before,

the pointwise transverse buckling approximation. That is, the vertical



READ PHYSICAL PROPERTIES
OF REACTOR SYSTEM

COMPUTE INITIAL EQUILIBRIUM
FLUX AND PRECURSORS IF DESIRED

READ NUCLEAR PROPERTIES
THAT VARY WITH TIME ZONE

CALCULATE

j+1 =B + PvSj

j+2 =B H j+1 P j+1

Is step 'No. MODIFY
accepted?

Yes

PRINT j+2 IF DESIRED

DE TERMINE NEW
TIME STEP SIZE

CALCULATE NEW 0

AND SET $A = j+2

End No
of: time.,
zone .?

Last No
time

zone ?

STOP

FIG. 5.

Main program logic.
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operator V is replaced by a diagonal matrix Q such that

Q A = V $3. (52)

The iteration of equation (51) then becomes

-(H+r+Q) _+J+1 = (L+U) iA. (53)

To obtain the final form of the iteration, equation (53) may be further

modified to include an acceleration parameter y. The final form of the

algorithm is then

-(H+r+Q- yI) +L = (L+ U+ yI) + . (54)

If y is taken sufficiently large, then it is easily seen that the matrix

on the left-hand side of equation (54) is diagonally dominant with positive

diagonal and non-positive off-diagonal elements. Consequently, it then

has a non-negative inverse, and since the right-hand side of equa-

tion (54) is also non-negative, then the algorithm may be written

j+1 = B_ qj, (55)

with Bs a non-negative, irreducible and primitive matrix. It then has

a largest positive eigenvalue equal to its spectral radius, and thus the

algorithm converges, since the solution components along the eigen-

vectors corresponding to smaller eigenvalues die out with successive

iterations.

The complete iteration procedure is shown in Figure 6. The inner-

most iteration computes the successive solution vector iterances and it
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FIG. 6.

Logic for steady state calculation.
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converges when the ratio k, of the L2 norms of successively computed

solution vectors, converges to a constant value. If the converged value

of k is not equal to 1. 0000, then the value of v, the number of neutrons

emitted per fission event, is adjusted in a manner such as to bring the

system closer to criticality. When this middle iteration eventually con-

verges and k = 1. 0 to within a specified tolerance, then the flux vector is

tested at selected points to determine whether the spatial shape has suf-

ficiently converged. If all these conditions are satisfied, then the steady

state or critical distributions have been found. It is also noted that be-

tween each flux innermost iteration the precursors are recalculated by

assuming the equilibrium relationship.

After a time step has been accepted, it must be determined whether

or not and by how much the time step should be changed. Figure 7 gives

the essential logic used to determine the time step adjustment. Its per-

tinent features include a minimum and a maximum allowable solution

growth and an efficiency that can determine whether or not the step size

should be changed. All the logic tests made are against variable input

quantities which are also defined in Figure 7.



67

EP1 = Tolerance for acceptance of time step. (Suggested value~ 1.0X10 4 )

EP2 = Maximum allowed value of Awfw before w h can become greater
than EP3. (Suggested value~. 005) max

EP3 = Maximum value of o xh before asymptotic behavior. (Suggested
value .0 1)

EP4 = Total percentage acceptance before time step can be increased.
(Suggested value~ 50%)

EP5 = Minimum allowed value of w h. (Suggested value 0.1 - EP3)max

EP6 = Absolute maximum allowed value of wma h. (Suggested value~ .05)

FIG. 7.

Logic for time step adjustment.
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APPENDIX B

Program Input Specification

The following information contains the input specification for the

LUMAC code. Values of input variables denoted with an asterisk indi-

cate that the respective program option is not available in the present

operating version of the code. The appropriate FORTRAN input card

format follows each card number.

CARD 1 (Format 12A6)

This card contains an appropriate problem title.

CARD 2 (Format 1615)

NGRP = total number of neutron energy groups.

NTHG = the control group used to test the frequencies.

NFG = total number of fast neutron energy groups.

NDEL = total number of delayed groups.

NBD1 = total number of right-hand region boundaries in direction

number one.

NBD2 = total number of right-hand region boundaries in direction

number two.

NUM = total number of spatial points used to test frequencies.

NCOMP = total number of different homogeneous material compo-

sitions.

NGEOM = 0, x-y geometry

= 1 , r-z geometry.

NBCU = 0, zero flux on upper boundary

= 1* , zero gradient on upper boundary.



NBCL = 0, zero flux on left boundary

= 1 *, zero gradient on left boundary.

NBCR = 0, zero flux on right boundary

=1, zero gradient on right boundary.

NFBK = 0, no feedback

= 1*, xenon feedback

= 2 , temperature feedback.

INSTEAD = 0, initial fluxes and precursors read into code.

= 1, initial flux estimates read into code. Initial fluxes

and precursors must be calculated by steady state

routines.

= 2, initial fluxes read into code. Only equilibrium

precursors must be calculated.

NSCAT 0,

= 1,
= 2,

no fast or full scattering matrices;

to next lowest energy group.

fast transfer matrix to be entered.

full transfer matrix to be entered.

scattering solely

CARD - (Fortnat:7E10. 3)

ALPHA = weight factor contained in Eq. (43).

WGT = weight factor contained in Eq. (46).

TIGHT1 = convergence criterion for steady state calculation

inner iteration, i. e. ,

Kj+1/K - 1. 01 < TIGHT1,

where KJ is the L2 norm of the flux vector at iteration j.

TIGHT 2 = convergence criterion for steady state calculation outer

iteration, i. e. ,

Kj+1 - 1.01 < TIGHT2.
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TIGHT3 = convergence criterion for steady state calculation outer

iteration, i. e.,

j+1 &j -1. 0 J < TIGHT3
r, s r, s

for all points (r, s), where + is the flux value atr,, s

point (r, s) at the j'th iteration.

Hx(1) = mesh spacing in centimeters in direction one.

Hx(2) = mesh spacing in centimeters in direction two.

CARD 4 (Format 1015)

(NCOR1(N), N = 1,NBD1)

This card contains NBD1 entries which are the numbers of the mesh

points lying on the NBD1 right-hand region boundaries.

CARD 5 (Format 1015)

(NCOR2(N), N = 1,NBD2)

This card contains NBD2 entries which are the numbers of the mesh

points lying on the NBD2 right-hand region boundaries.

CARD 6 (Format 20I4)

(IPT1(N), IPT2(N), N = 1,NUM)

This card contains NUM pairs of numbers which are the coordinates

of the NUM test points in directions one and two.

CARD 7 (Format 6E12.6)

(BETA(I), I = 1,NDEL)

This card contains the delayed fraction yield from fission into the

NDEL delayed groups.
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CARD 8 (Format 6E 12. 6)

(DECAY(I), I = 1,NDEL)

This card contains the decay constants of the NDEL delayed groups.

CARD 9 (Format 6E 12. 6)

(SD(IG, I), I = 1, NDEL)

This card gives the fractional yields of neutrons into neutron energy

group IG from delayed group I. This card is repeated NGRP times.

CARD 10 (Format 5E12. 5)

(CHI(IG), IG = 1, NGRP)

This card gives the fractional yields from fission into energy

group IG.

CARD 11 (Format 5E 12. 5)

(V(IG), IG =1, NGRP)

This card gives the neutron group velocities.

CARD 12 (Format 6E12.6)

EP1 = tolerance that must be met at all test points for acceptance

of a time step, i. e. ,

j+1 j
p p

- ewh I < EP1.

EP2 = maximum allowed percentage change in the frequencies to

permit mah to become greater than EP3.

EP3 = maximum allowed value of omaxh until zo/o < EP2.

EP4 = minimum total percentage acceptance of time steps required

to permit the time step to increase.

................................................................... 11 ..................................
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EP6 = absolute maximum wm h permitted.max

TSTINC = factor by which time step is increased.

CARD 13 (Format 20I4)

((NCMP(I, J), I = 1,NBD2), J = 1,NBD1)

This card contains NBD2 times NBD1 entries which are the number

of the composition assigned to each region.

The sequence of cards 14 through 16 is repeated once for each

composition number. The ordering of the compositions in this

set of cards must be consistent with the numbers used to identify

the compositions on card #13.

CARD 14 (Format 6E12.6)

RNU(IG) = number of neutrons emitted per fission event initiated

by a neutron in group IG.

SIGFIN(IG) = fission cross section in neutron energy group IG.

SIGCIN(IG) = capture cross section in neutron energy group IG.

SIGTIN(IG) = transport cross section in neutron energy group IG.

XY is not used.

SIGXIN(IG+1,IG) = transfer cross section into group (IG+1) from

neutron energy group IG.

This card is repeated NGRP times.

CARD #15 is used only if NSCAT = 1 on card #2.

CARD 15 (Format 6E12.6)

(SIGXIN(K, IG), K = NGPLUS, NGPLU)

This card contains all the fast transfer cross sections.

This card is repeated NFG times.

..... ..... .. ------------------------
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Card #16 is used only if NSCAT = 2 on card #2.

CARD 16 (Format 6E12. 6)

(SIGXIN(K, IG), K = 1, NGRP)

This card contains the full transfer matrix of cross sections.

This card is repeated NGRP times.

CARD 17 (Format 6E12.6)

This card is presently not used.

CARD 18 (Format 6E12.6)

This card is presently not used.

CARD 19 (Format 6E12.6)

((PSI(M, N, IG, 1), M = 1, NPT2), N = 1, NPT1)

This card contains all the input fluxes and, if specified by NSTEAD,

all the initial precursor concentrations.

This card is repeated once for each neutron energy group and for

each delayed group.

CARD 20 (Format 3E10. 5, 5110)

HMIN = minimum allowed value of the time step permitted in this

time zone.

HMAX = maximum allowed value of the time step permitted in this

time zone.

TZ = time in seconds at the end of the time zone.

IPRN = a control variable specifying the frequency of output infor-

mation. That is, the fluxes and precursors are printed

I'Mr IR ... " m I I I I . I R.,
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every IPRN time steps. If IPRN = 0, then this output option

is not used.

NUM2 = number of output edits occurring at equal time intervals

throughout the time zone. If NUM2 = 0, then this output

option is not used. If NUM2 < 0, see card #21.

NTAG = number of Geometrical regions in which there are time

dependent cross sections in this time zone.

NSORCE = 0, no sources present

1 , sources present.

NZON = a control variable which indicates that card #20A is to be

read if NZON # 0.

CARD 20A (Format 3E10. 5)

HMIN = minimum time step allowed in this time zone.

HMAX = maximum time step allowed in this time zone.

EP1 = tolerance, as defined for card #12, used for this time zone.

CARD 21 (Format 6E12. 5)

(STPRN(N), N = 1, NUM2)

If NUM2 is negative, then INUM2| values of print times during the

time zone are read in on this card.

CARDS #22 through #29 are repeated in sequence NTAG times.

CARD 22 (Format 615)

This card specifies which geometric region and which cross sec-

tions vary with time.

K = region index in direction one.

L = region index in direction two.
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The following variables indicate the type of time dependence in the

various cross sections.

NTAGX(K, L) =

NTAGT(K, L) =

NTAGC(K, L) =

NTAGF(K, L) =

0, no time dependence in scattering cross section.

1, linear time dependence in scattering cross sec-

tion.

2, quadratic time dependence in scattering cross

section.

0, no time dependence in transport cross section.

1, linear time dependence in transport cross sec-

tion.

2, quadratic time dependence in transport cross

section.

0, no time dependence in capture cross section.

1, linear time dependence in capture cross sec-

tion.

2, quadratic time dependence in capture cross

section.

0,

= 1,
= 2,

CARD #23 is skipped

no time dependence in fission cross section.

linear time dependence in fission cross section.

quadratic time dependence in fission cross sec-

tion.

if NTAGX(K, L) = 0.

CARD 23 (Format 6E12. 5)

CXL(K, L) = linear coefficient of the scattering cross section.

CXQ(K, L) = quadratic coefficient of the scattering cross section.

CARDS #24 and #25 are skipped if NTAGT(K, L) = 0.

CARD 24 (Format 6E12. 5)

(CTRL(K,.L, IG), IG = 1,NGRP)

This card contains the linear coefficient of the transport cross

sections for each energy group.

M I I IM -, Wmr w - M M, M I
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CARD #25 is skipped if NTAGT(K, L) # 2.

CARD 25 (Format 6E12. 5)

(C TRQ(K, L, IG), IG = 1, NGRP)

This card contains the quadratic coefficient of the transport cross

section for each energy group.

CARDS #26 and #27 are skipped if NTAGC(K, L) = 0.

CARD 26 (Format 6E12. 5)

(CCL(K, L, IG), IG = 1, NGR P)

This card contains the linear coefficient of the capture cross sec-

tion for each energy group.

CARD #27 is skipped if NTAGC(K, L) * 2.

CARD 27 (Format 6E12. 5)

(CCQ(K, L, IG), IG = 1, NGRP)

This card contains the quadratic coefficient of the capture cross

section for each energy group.

CARDS #28 and #29 are skipped if NTAGF(K, L) = 0.

CARD 28 (Format 6E12. 5)

(CFL(K,L,IG), IG = 1,NGRP)

This card contains the linear coefficient of the fission cross sec-

tion for each energy group.

CARD #29 is skipped if NTAGF(K, L) # 2.

.......... _-- - I . ..... .. WAwAftih,
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CARD 29 (Format 6E12. 5)

(CFQ(K, L, IG), IG = 1, NGRP)

This card contains the quadratic coefficient of the fission cross

section for each energy group.
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APPENDIX C

Computer Program Listing
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