In consistent history quantum theory, a description of the time development
of a quantum system requires choosing a framework or consistent family, and
then calculating probabilities for the different histories which it contains.
It is argued that the framework is chosen by the physicist constructing a
description of a quantum system on the basis of questions he wishes to address,
in a manner analogous to choosing a coarse graining of the phase space in
classical statistical mechanics. The choice of framework is not determined by
some law of nature, though it is limited by quantum incompatibility, a concept
which is discussed using a two-dimensional Hilbert space (spin half particle).
Thus certain questions of physical interest can only be addressed using
frameworks in which they make (quantum mechanical) sense. The physicist's
choice does not influence reality, nor does the presence of choices render the
theory subjective. On the contrary, predictions of the theory can, in
principle, be verified by experimental measurements. These considerations are
used to address various criticisms and possible misunderstandings of the
consistent history approach, including its predictive power, whether it
requires a new logic, whether it can be interpreted realistically, the nature
of ``quasiclassicality'', and the possibility of ``contrary'' inferences.Comment: Minor revisions to bring into conformity with published version.
Revtex 29 pages including 1 page with figure