23 research outputs found

    Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production

    Get PDF
    A rapidly-growing 3D printing technology is innovatively employed for the manufacture of a new class of heterogenous catalysts for the conversion of CO2 into industrially relevant chemicals such as cyclic carbonates. For the first time, directly printed graphene-based 3D structured nanocatalysts have been developed combining the exceptional properties of graphene and active CeZrLa mixed-oxide nanoparticles. It constitutes a significant advance on previous attempts at 3D printing graphene inks in that it does not merely explore the printability itself, but enhances the efficiency of industrially relevant reactions, such as CO2 utilisation for direct propylene carbonate (PC) production in the absence of organic solvents. In comparison to the starting powder, 3D printed GO-supported CeZeLa catalysts showed improved activity with higher conversion and no noticeable change in selectivity. This can be attributed to the spatially uniform distribution of nanoparticles over the 2D and 3D surfaces, and the larger surface area and pore volume of the printed structures. 3D printed GO-supported CeZeLa catalysts compared to unsupported 3D printed samples exhibited higher selectivity and yield owing to the great number of new weak acid sites appearing in the supported sample, as observed by NH3-TPD analysis. In addition, the catalyst's facile separation from the product has the capacity to massively reduce materials and operating costs resulting in increased sustainability. It convincingly shows the potential of these printing technologies in revolutionising the way catalysts and catalytic reactors are designed in the general quest for clean technologies and greener chemistry

    Molecular requirements involving the human platelet protease-activated receptor-4 mechanism of activation by peptide analogues of its tetheredligand

    Get PDF
    Thrombin is the most potent agonist of human platelets and its effects are primarily mediated through the protease-activated receptors (PARs)-1 and -4. Although PAR-1 has higher affinity for thrombin than PAR-4, both receptors contribute to thrombin-mediated actions on platelets. Recently, a potent and selective PAR-1 antagonist (vorapaxar) was approved for clinical use in selected patients. In contrast, despite the fact that several PAR-4 antagonists have been developed, few of them have been tested in clinical trials. The aim of the present study was to elucidate the molecular requirements involving the PAR-4 mechanism of activation by peptide analogues of its tethered-ligand. Eight synthetic PAR-4 tethered-ligand peptide analogues were synthesized and studied for their agonistic/antagonistic potency and selectivity toward human washed platelet aggregation, using light transmittance aggregometry. In addition, in silico studies were conducted to describe the receptor–peptide interactions that are developed following PAR-4 exposure to the above analogues. To provide a first structure-activity relationship rationale on the bioactivity profiles recorded for the studied analogues, molecular docking was applied in a homology model of PAR-4, derived using the crystal structure of PAR-1. The following peptide analogues were synthesized: AYPGKF-NH2 (1), GYPGKF-NH2 (2), AcAYPGKF-NH2 (3), trans-cinnamoyl-AYPGKF-NH2 (4), YPGKF-NH2 (5), Ac-YPGKF-NH2 (6), transcinnamoyl-YPGKF-NH2 (7), and caffeoyl-YPGKF-NH2 (8). Peptide (1) is a selective PAR-4 agonist inducing platelet aggregation with an IC50 value of 26.2 μM. Substitution of Ala-1 with Gly-1 resulted in peptide (2), which significantly reduces the agonistic potency of peptide (1) by 25- fold. Importantly, substitution of Ala-1 with trans-cinnamoyl-1 resulted in peptide (7), which completely abolishes the agonistic activity of peptide (1) and renders it with a potent antagonistic activity toward peptide (1)-induced platelet aggregation. All other peptides tested were inactive. Tyr-2, residue, along with its neighboring environment was a key determinant in the PAR-4 recognition mode. When the neighboring residues to Tyr-2 provided an optimum spatial ability for the ligand to enter into the binding site of the transmembrane receptor, a biological response was propagated. These results were compared with the predicted binding poses of small molecule antagonists of PAR-4, denoted as YD-3, ML-354, and BMS-986120. π–π stacking interaction with Tyr-183 appears to be critical and common for both small molecules antagonists and the peptide trans-cinnamoyl-YPGKFNH2. Conclusively, the lipophilicity, size, and aromatic nature of the residue preceding Tyr-2 are determining factors on whether a human platelet PAR-4 tethered-ligand peptide analogue will exert an agonistic or antagonistic activit

    Towards High Capacity Li-ion Batteries Based on Silicon-Graphene Composite Anodes and Sub-micron V-doped LiFePO4 Cathodes

    Get PDF
    Lithium iron phosphate, LiFePO4 (LFP) has demonstrated promising performance as a cathode material in lithium ion batteries (LIBs), by overcoming the rate performance issues from limited electronic conductivity. Nano-sized vanadium-doped LFP (V-LFP) was synthesized using a continuous hydrothermal process using supercritical water as a reagent. The atomic % of dopant determined the particle shape. 5 at. % gave mixed plate and rod-like morphology, showing optimal electrochemical performance and good rate properties vs. Li. Specific capacities of >160 mAh g−1 were achieved. In order to increase the capacity of a full cell, V-LFP was cycled against an inexpensive micron-sized metallurgical grade Si-containing anode. This electrode was capable of reversible capacities of approximately 2000 mAh g−1 for over 150 cycles vs. Li, with improved performance resulting from the incorporation of few layer graphene (FLG) to enhance conductivity, tensile behaviour and thus, the composite stability. The cathode material synthesis and electrode formulation are scalable, inexpensive and are suitable for the fabrication of larger format cells suited to grid and transport applications

    A novel synthetic luteinizing hormone-releasing hormone (LHRH) analogue coupled with modified β-cyclodextrin: Insight into its intramolecular interactions

    No full text
    Background: Cyclodextrins (CDs) in combination with therapeutic proteins and other bioactive compounds have been proposed as candidates that show enhanced chemical and enzymatic stability, better absorption, slower plasma clearance and improved dose–response curves or immunogenicity. As a result, an important number of therapeutic complexes between cyclodextrins and bioactive compounds capable to control several diseases have been developed. Results: In this article, the synthesis and the structural study of a conjugate between a luteinizing hormonereleasing hormone (LHRH) analogue, related to the treatment of hormone dependent cancer and fertility, and modified β-cyclodextrin residue are presented. The results show that both the phenyl group of tyrosine (Tyr) as well as the indole group of tryptophan (Trp) can be encapsulated inside the cyclodextrin cavity. Solution NMR experiments provide evidence that these interactions take place intramolecularly and not intermolecularly. Conclusions: The study of a LHRH analogue conjugated with modified β-cyclodextrin via high field NMR and MD experiments revealed the existence of intramolecular interactions that could lead to an improved drug delivery. General significance: NMR in combination with MD simulation is of great value for a successful rational design of peptide–cyclodextrin conjugates showing stability against enzymatic proteolysis and a better pharmacological profile

    Structure–function analysis of naturally occurring apolipoprotein A-I L144R, A164S and L178P mutants provides insight on their role on HDL levels and cardiovascular risk

    No full text
    Naturally occurring point mutations in apolipoprotein A-I (apoA-I), the major protein component of high-density lipoprotein (HDL), may afect plasma HDL-cholesterol levels and cardiovascular risk. Here, we evaluated the efect of human apoA-I mutations L144R (associated with low HDL-cholesterol), L178P (associated with low HDL-cholesterol and increased cardiovascular risk) and A164S (associated with increased cardiovascular risk and mortality without low HDL-cholesterol) on the structural integrity and functions of lipid-free and lipoprotein-associated apoA-I in an efort to explain the phenotypes of subjects carrying these mutations. All three mutants, in lipid-free form, presented structural and thermodynamic aberrations, with apoA-I[L178P] presenting the greatest thermodynamic destabilization. Additionally, apoA-I[L178P] displayed reduced ABCA1-mediated cholesterol elux capacity. When in reconstituted HDL (rHDL), apoA-I[L144R] and apoA-I[L178P] were more thermodynamically destabilized compared to wild-type apoA-I, both displayed reduced SR-BI-mediated cholesterol elux capacity and apoA-I[L144R] showed severe LCAT activation defect. ApoA-I[A164S] was thermodynamically unaffected when in rHDL, but exhibited a series of functional defects. Speciically, it had reduced ABCG1-mediated cholesterol and 7-ketocholesterol elux capacity, failed to reduce ROS formation in endothelial cells and had reduced capacity to induce endothelial cell migration. Mechanistically, the latter was due to decreased capacity of rHDL-apoA-I[A164S] to activate Akt kinase possibly by interacting with endothelial LOX-1 receptor. The impaired capacity of rHDL-apoA-I[A164S] to preserve endothelial function may be related to the increased cardiovascular risk for this mutation. Overall, our structure–function analysis of L144R, A164S and L178P apoA-I mutants provides insights on how HDL-cholesterol levels and/or atheroprotective properties of apoA-I/HDL are impaired in carriers of these mutations

    Synthesis, biology, computational studies and in vitro controlled release of new isoniazid-based adamantane derivatives

    No full text
    There is a necessity for new drugs to be more efficient than today's standard due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) Results/methodology: 12 new isoniazid-based adamantane derivatives were synthesized and tested for their antitubercular activity. The pharmacological test results and the aqueous dissolution profile of representative examples of the new molecules are in agreement with the computational results obtained from docking poses and molecular dynamics simulations on the tested compounds. Conclusion: Among their congeners, the adamantane isonicotinoyl hydrazones Ia and Ih exhibit the best antitubercular activity (MIC = 0.04 μg/ml) and the lowest cytotoxicity (selectivity index ≥2500). These results are useful for in future in vivo studie

    Next frontiers in cleaner synthesis: 3D printed graphene-supported CeZrLa mixed-oxide nanocatalyst for CO2 utilisation and direct propylene carbonate production

    No full text
    A rapidly-growing 3D printing technology is innovatively employed for the manufacture of a new class of heterogenous catalysts for the conversion of CO2 into industrially relevant chemicals such as cyclic carbonates. For the first time, directly printed graphene-based 3D structured nanocatalysts have been developed combining the exceptional properties of graphene and active CeZrLa mixed-oxide nanoparticles. It constitutes a significant advance on previous attempts at 3D printing graphene inks in that it does not merely explore the printability itself, but enhances the efficiency of industrially relevant reactions, such as CO2 utilisation for direct propylene carbonate (PC) production in the absence of organic solvents. In comparison to the starting powder, 3D printed GO-supported CeZeLa catalysts showed improved activity with higher conversion and no noticeable change in selectivity. This can be attributed to the spatially uniform distribution of nanoparticles over the 2D and 3D surfaces, and the larger surface area and pore volume of the printed structures. 3D printed GO-supported CeZeLa catalysts compared to unsupported 3D printed samples exhibited higher selectivity and yield owing to the great number of new weak acid sites appearing in the supported sample, as observed by NH3-TPD analysis. In addition, the catalyst's facile separation from the product has the capacity to massively reduce materials and operating costs resulting in increased sustainability. It convincingly shows the potential of these printing technologies in revolutionising the way catalysts and catalytic reactors are designed in the general quest for clean technologies and greener chemistry

    Synthesis, biology, computational studies and in vitro controlled release of new isoniazid-based adamantane derivatives

    No full text
    Aim: There is a necessity for new drugs to be more efficient than today's standard due to the emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb) Results/methodology: 12 new isoniazid-based adamantane derivatives were synthesized and tested for their antitubercular activity. The pharmacological test results and the aqueous dissolution profile of representative examples of the new molecules are in agreement with the computational results obtained from docking poses and molecular dynamics simulations on the tested compounds. Conclusion: Among their congeners, the adamantane isonicotinoyl hydrazones Ia and Ih exhibit the best antitubercular activity (MIC = 0.04 mu g/ml) and the lowest cytotoxicity (selectivity index >= 2500). These results are useful for in future in vivo studies
    corecore