6,058 research outputs found
The Yale-Potsdam Stellar Isochrones (YaPSI)
We introduce the Yale-Potsdam Stellar Isochrones (YaPSI), a new grid of
stellar evolution tracks and isochrones of solar-scaled composition. In an
effort to improve the Yonsei-Yale database, special emphasis is placed on the
construction of accurate low-mass models (Mstar < 0.6 Msun), and in particular
of their mass-luminosity and mass-radius relations, both crucial in
characterizing exoplanet-host stars and, in turn, their planetary systems. The
YaPSI models cover the mass range 0.15 to 5.0 Msun, densely enough to permit
detailed interpolation in mass, and the metallicity and helium abundance ranges
[Fe/H] = -1.5 to +0.3, and Y = 0.25 to 0.37, specified independently of each
other (i.e., no fixed Delta Y/Delta Z relation is assumed). The evolutionary
tracks are calculated from the pre-main sequence up to the tip of the red giant
branch. The isochrones, with ages between 1 Myr and 20 Gyr, provide UBVRI
colors in the Johnson-Cousins system, and JHK colors in the homogeneized
Bessell & Brett system, derived from two different semi-empirical Teff-color
calibrations from the literature. We also provide utility codes, such as an
isochrone interpolator in age, metallicity, and helium content, and an
interface of the tracks with an open-source Monte Carlo Markov-Chain tool for
the analysis of individual stars. Finally, we present comparisons of the YaPSI
models with the best empirical mass- luminosity and mass-radius relations
available to date, as well as isochrone fitting of well-studied steComment: 17 pages, 14 figures; accepted for publication in the Astrophysical
Journa
Towards a time-reversal mirror for quantum systems
The reversion of the time evolution of a quantum state can be achieved by
changing the sign of the Hamiltonian as in the polarization echo experiment in
NMR. In this work we describe an alternative mechanism inspired by the acoustic
time reversal mirror. By solving the inverse time problem in a discrete space
we develop a new procedure, the perfect inverse filter. It achieves the exact
time reversion in a given region by reinjecting a prescribed wave function at
its periphery.Comment: 6 pages, 4 figures. Introduction modified, references added, one
figure added to improve the discussio
Intention and motor representation in purposive action
Are there distinct roles for intention and motor representation in explaining the purposiveness of action? Standard accounts of action assign a role to intention but are silent on motor representation. The temptation is to suppose that nothing need be said here because motor representation is either only an enabling condition for purposive action or else merely a variety of intention. This paper provides reasons for resisting that temptation. Some motor representations, like intentions, coordinate actions in virtue of representing outcomes; but, unlike intentions, motor representations cannot feature as premises or conclusions in practical reasoning. This implies that motor representation has a distinctive role in explaining the purposiveness of action. It also gives rise to a problem: were the roles of intention and motor representation entirely independent, this would impair effective action. It is therefore necessary to explain how intentions interlock with motor representations. The solution, we argue, is to recognise that the contents of intentions can be partially determined by the contents of motor representations. Understanding this content-determining relation enables better understanding how intentions relate to actions
Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime
Convection in stars excites resonant acoustic waves which depend on the sound
speed inside the star, which in turn depends on properties of the stellar
interior. Therefore, asteroseismology is an unrivaled method to probe the
internal structure of a star. We made a seismic study of the metal-poor
subgiant star nu Indi with the goal of constraining its interior structure. Our
study is based on a time series of 1201 radial velocity measurements spread
over 14 nights obtained from two sites, Siding Spring Observatory in Australia
and ESO La Silla Observatory in Chile. The power spectrum of the high precision
velocity time series clearly presents several identifiable peaks between 200
and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09
uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been
identified with amplitudes in the range 53 to 173 cm/s. The mode damping time
is estimated to be about 16 days (1-sigma range between 9 and 50 days),
substantially longer than in other stars like the Sun, the alpha Cen system or
the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte
Biochemical and cytological characterization of wheat/Aegilops ventricosa addition and transfer lines carrying chromosome 4MV
The gene encoding a variant of alcohol dehydrogenase, Adh-, has been found to be associated with the chromosome of the Mv genome which is present in type 9 wheat/Aegilops ventricosa addition line, to which the genes for protein CM-4 and for a phosphatase variant, Aph-v, had been previously assigned. Transfer line H-93-33, which has 42 chromosomes and has been derived from the cross (Triticum turgidum x Ae. ventricosa) x T. aestivum, carries genes encoding all three biochemical markers. Linkage between these genes has been demonstrated by analysis of individual kernels of the F2 (H-93-33 x T. aestivum cv. Almatense H-10-15). A study of the hybrids of line H-93-33 with T. aestivum H-10-15 and with the 4DS ditelosomic line has confirmed that, as suspected, the linkage group corresponds to chromosome 4Mv from Ae. ventricosa. Additionally, it has been found that the previously reported resistance of line H-93-33 to powdery mildew (Erysiphe graminis) is also linked to the biochemical markers; this indicates that either the gene responsible for it is different from that in lines H-93-8 and H-93-35, or that a translocation between two different Mv chromosomes has occurred in line H-93-33
Local Dynamics and Strong Correlation Physics I: 1D and 2D Half-filled Hubbard Models
We report on a non-perturbative approach to the 1D and 2D Hubbard models that
is capable of recovering both strong and weak-coupling limits. We first show
that even when the on-site Coulomb repulsion, U, is much smaller than the
bandwith, the Mott-Hubbard gap never closes at half-filling in both 1D and 2D.
Consequently, the Hubbard model at half-filling is always in the
strong-coupling non-perturbative regime. For both large and small U, we find
that the population of nearest-neighbour singlet states approaches a value of
order unity as as would be expected for antiferromagnetic order. We
also find that the double occupancy is a smooth monotonic function of U and
approaches the anticipated non-interacting limit and large U limits. Finally,
in our results for the heat capacity in 1D differ by no more than 1% from the
Bethe ansatz predictions. In addition, we find that in 2D, the heat capacity vs
T for different values of U exhibits a universal crossing point at two
characteristic temperatures as is seen experimentally in a wide range of
strongly-correlated systems such as , , and . The
success of this method in recovering well-established results that stem
fundamentally from the Coulomb interaction suggests that local dynamics are at
the heart of the physics of strongly correlated systems.Comment: 10 pages, 16 figures included in text, Final version for publication
with a reference added and minor corrections. Phys. Rev. B, in pres
The hyperfine transition in light muonic atoms of odd Z
The hyperfine (hf) transition rates for muonic atoms have been re-measured
for select light nuclei, using neutron detectors to evaluate the time
dependence of muon capture. For F = 5.6 (2)
s for the hf transition rate, a value which is considerably more
accurate than previous measurements. Results are also reported for Na, Al, P,
Cl, and K; that result for P is the first positive identification.Comment: 12 pages including 5 tables and 4 figures, RevTex, submitted to Phys.
Rev.
Dynamics of liquid 4He in Vycor
We have measured the dynamic structure factor of liquid 4He in Vycor using
neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are
observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r
energies and lifetimes at low temperature (T = 0.5 K) and their temperature
dependence are the same as in bulk liquid 4He. However, the weight of the
single p-r component does not scale with the superfluid fraction (SF) as it
does in the bulk. In particular, we observe a p-r excitation between T_c =
1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if
the p-r excitation intensity scales with the Bose condensate, that there is a
separation of the Bose-Einstein condensation temperature and the superfluid
transition temperature T_c of 4He in Vycor. We also observe a two-dimensional
layer mode near the roton wave vector. Its dispersion is consistent with
specific heat and SF measurements and with layer modes observed on graphite
surfaces.Comment: 3 pages, 4 figure
- …