43,089 research outputs found

    Rhodobacter veldkampii, a new species of phototrophic purple nonsulfur bacteria

    Get PDF
    We describe a new species of purple nonsulfur bacteria, which has the ability to grow under photoautotrophic growth conditions with sulfide as an electron donor and shows the characteristic properties of Rhodobacter species (i.e., ovoid to rod-shaped cells, vesicular internal photosynthetic membranes, bacteriochlorophyll a and carotenoids of the spheroidene series as photosynthetic pigments). In its physiological properties this new species is particularly similar to the recently described species Rhodobacter adriaticus, but it shows enough differences compared with R. adriaticus and the other Rhodobacter species to be recognized as a separate species. In honor of Hans Veldkamp, a Dutch microbiologist, the name Rhodobacter veldkampii sp. nov. is proposed

    Extensions of Lieb's concavity theorem

    Full text link
    The operator function (A,B)\to\tr f(A,B)(K^*)K, defined on pairs of bounded self-adjoint operators in the domain of a function f of two real variables, is convex for every Hilbert Schmidt operator K, if and only if f is operator convex. As a special case we obtain a new proof of Lieb's concavity theorem for the function (A,B)\to\tr A^pK^*B^{q}K, where p and q are non-negative numbers with sum p+q\le 1. In addition, we prove concavity of the operator function (A,B)\to \tr(A(A+\mu_1)^{-1}K^* B(B+\mu_2)^{-1}K) on its natural domain D_2(\mu_1,\mu_2), cf. Definition 4.1Comment: The format of one reference is changed such that CiteBase can identify i

    Constraint on the Low Energy Constants of Wilson Chiral Perturbation Theory

    Full text link
    Wilson chiral perturbation theory (WChPT) is the effective field theory describing the long- distance properties of lattice QCD with Wilson or twisted-mass fermions. We consider here WChPT for the theory with two light flavors of Wilson fermions or a single light twisted-mass fermion. Discretization errors introduce three low energy constants (LECs) into partially quenched WChPT at O(a^2), conventionally called W'_6, W'_7 and W'_8 . The phase structure of the theory at non-zero a depends on the sign of the combination 2W'_6 + W'_8, while the spectrum of the lattice Hermitian Wilson-Dirac operator depends on all three constants. It has been argued, based on the positivity of partition functions of fixed topological charge, and on the convergence of graded group integrals that arise in the epsilon-regime of ChPT, that there is a constraint on the LECs arising from the underlying lattice theory. In particular, for W'_6 = W'_7 = 0, the constraint found is W'_8 \le 0. Here we provide an alternative line of argument, based on mass inequalities for the underlying partially quenched theory. We find that W'_8 \le 0, irrespective of the values of W'_6 and W'_7. Our constraint implies that 2W'_6 > |W'_8| if the phase diagram is to be described by the first-order scenario, as recent simulations suggest is the case for some choices of action.Comment: 10 pages, no figure

    Crossover Behavior in Burst Avalanches of Fiber Bundles: Signature of Imminent Failure

    Full text link
    Bundles of many fibers, with statistically distributed thresholds for breakdown of individual fibers and where the load carried by a bursting fiber is equally distributed among the surviving members, are considered. During the breakdown process, avalanches consisting of simultaneous rupture of several fibers occur, with a distribution D(Delta) of the magnitude Delta of such avalanches. We show that there is, for certain threshold distributions, a crossover behavior of D(Delta) between two power laws D(Delta) proportional to Delta^(-xi), with xi=3/2 or xi=5/2. The latter is known to be the generic behavior, and we give the condition for which the D(Delta) proportional to Delta^(-3/2) behavior is seen. This crossover is a signal of imminent catastrophic failure in the fiber bundle. We find the same crossover behavior in the fuse model.Comment: 4 pages, 4 figure

    Measurement of calcium isotopes (δ44Ca) using a multicollector TIMS technique

    Get PDF
    We propose a new“multicollector technique” for the thermal ionization mass spectrometer (TIMS) measurement of calcium (Ca) isotope ratios improving average internal statistical uncertainty of the 44Ca/40Ca measurements by a factor of 2–4 and average sample throughput relative to the commonly used “peak jumping method” by a factor of 3. Isobaric interferences with potassium (40K+) and titanium (48Ti+) or positively charged molecules like 24Mg19F+, 25Mg19F+, 24Mg16O+ and 27Al16O+ can either be corrected or are negligible. Similar, peak shape defects introduced by the large dispersion of the whole Ca isotope mass range from 40–48 atomic mass units (amu) do not influence Ca-isotope ratios. We use a 43Ca/48Ca double spike with an iterative double spike correction algorithm for precise isotope measurement

    Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    Get PDF
    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements

    Non-equilibrium dynamics in an interacting nanoparticle system

    Get PDF
    Non-equilibrium dynamics in an interacting Fe-C nanoparticle sample, exhibiting a low temperature spin glass like phase, has been studied by low frequency ac-susceptibility and magnetic relaxation experiments. The non-equilibrium behavior shows characteristic spin glass features, but some qualitative differences exist. The nature of these differences is discussed.Comment: 7 pages, 11 figure

    POWTEX Neutron Diffractometer at FRM II - new perspectives for in-situ rock deformation analysis

    Get PDF
    EGU2012-13521 In Geoscience quantitative texture analysis here defined as the quantitative analysis of the crystallographic preferred orientation (CPO), is a common tool for the investigation of fabric development in mono- and polyphase rocks, their deformation histories and kinematics. Bulk texture measurements also allow the quantitative characterisation of the anisotropic physical properties of rock materials. A routine tool to measure bulk sample volumes is neutron texture diffraction, as neutrons have large penetration capabilities of several cm in geological sample materials. The new POWTEX (POWder and TEXture) Diffractometer at the neutron research reactor FRM II in Garching, Germany is designed as a high-intensity diffractometer by groups from the RWTH Aachen, Forschungszentrum Jülich and the University of Göttingen. Complementary to existing neutron diffractometers (SKAT at Dubna, Russia; GEM at ISIS, UK; HIPPO at Los Alamos, USA; D20 at ILL, France; and the local STRESS-SPEC and SPODI at FRM II) the layout of POWTEX is focused on fast time-resolved experiments and the measurement of larger sample series as necessary for the study of large scale geological structures. POWTEX is a dedicated beam line for geoscientific research. Effective texture measurements without sample tilting and rotation are possible firstly by utilizing a range of neutron wavelengths simultaneously (Time-of-Flight technique) and secondly by the high detector coverage (9.8 sr) and a high flux (�~1x10 7 n/cm2s) at the sample. Furthermore the instrument and the angular detector resolution is designed also for strong recrystallisation textures as well as for weak textures of polyphase rocks. These instrument characteristics allow in-situ time-resolved texture measurements during deformation experiments on rocksalt, ice and other materials as large sample environments will be implemented at POWTEX. The in-situ deformation apparatus is operated by a uniaxial spindle drive with a maximum axial load of 250 kN, which will be redesigned to minimize shadowing effects inside the cylindrical detector. The HT deformatione experiments will be carried out in uniaxial compression or extension and an upgrade to triaxial deformation conditions is envisaged. The load frame can alternatively be used for ice deformation by inserting a cryostat cell for temperatures down to 77 K with a triaxial apparatus allowing also simple shear experiments on ice. Strain rates range between 10-8 and 10-3 s-1 reaching to at least 50% axial strain. The deformation apparatus is designed for continuous long-term deformation experiments and can be exchanged between in-situ and ex-situ placements during continuous operation inside and outside the neutron detector
    • …
    corecore