131 research outputs found

    Differential interaction nets

    Get PDF
    AbstractWe introduce interaction nets for a fragment of the differential lambda-calculus and exhibit in this framework a new symmetry between the of course and the why not modalities of linear logic, which is completely similar to the symmetry between the tensor and par connectives of linear logic. We use algebraic intuitions for introducing these nets and their reduction rules, and then we develop two correctness criteria (weak typability and acyclicity) and show that they guarantee strong normalization. Finally, we outline the correspondence between this interaction nets formalism and the resource lambda-calculus

    Predicate Transformers and Linear Logic, yet another denotational model

    Get PDF
    International audienceIn the refinement calculus, monotonic predicate transformers are used to model specifications for (imperative) programs. Together with a natural notion of simulation, they form a category enjoying many algebraic properties. We build on this structure to make predicate transformers into a de notational model of full linear logic: all the logical constructions have a natural interpretation in terms of predicate transformers (i.e. in terms of specifications). We then interpret proofs of a formula by a safety property for the corresponding specification

    On Linear Information Systems

    Get PDF
    Scott's information systems provide a categorically equivalent, intensional description of Scott domains and continuous functions. Following a well established pattern in denotational semantics, we define a linear version of information systems, providing a model of intuitionistic linear logic (a new-Seely category), with a "set-theoretic" interpretation of exponentials that recovers Scott continuous functions via the co-Kleisli construction. From a domain theoretic point of view, linear information systems are equivalent to prime algebraic Scott domains, which in turn generalize prime algebraic lattices, already known to provide a model of classical linear logic

    The stack calculus

    Get PDF
    We introduce a functional calculus with simple syntax and operational semantics in which the calculi introduced so far in the Curry-Howard correspondence for Classical Logic can be faithfully encoded. Our calculus enjoys confluence without any restriction. Its type system enforces strong normalization of expressions and it is a sound and complete system for full implicational Classical Logic. We give a very simple denotational semantics which allows easy calculations of the interpretation of expressions.Comment: In Proceedings LSFA 2012, arXiv:1303.713

    Observed communication semantics for classical processes

    Get PDF
    Classical Linear Logic (CLL) has long inspired readings of its proofs as communicating processes. Wadler's CP calculus is one of these readings. Wadler gave CP an operational semantics by selecting a subset of the cut-elimination rules of CLL to use as reduction rules. This semantics has an appealing close connection to the logic, but does not resolve the status of the other cut-elimination rules, and does not admit an obvious notion of observational equivalence. We propose a new operational semantics for CP based on the idea of observing communication, and use this semantics to define an intuitively reasonable notion of observational equivalence. To reason about observational equivalence, we use the standard relational denotational semantics of CLL. We show that this denotational semantics is adequate for our operational semantics. This allows us to deduce that, for instance, all the cut-elimination rules of CLL are observational equivalences

    Change Actions: Models of Generalised Differentiation

    Full text link
    Cai et al. have recently proposed change structures as a semantic framework for incremental computation. We generalise change structures to arbitrary cartesian categories and propose the notion of change action model as a categorical model for (higher-order) generalised differentiation. Change action models naturally arise from many geometric and computational settings, such as (generalised) cartesian differential categories, group models of discrete calculus, and Kleene algebra of regular expressions. We show how to build canonical change action models on arbitrary cartesian categories, reminiscent of the F\`aa di Bruno construction

    Towards a unified theory of Sobolev inequalities

    Full text link
    We discuss our work on pointwise inequalities for the gradient which are connected with the isoperimetric profile associated to a given geometry. We show how they can be used to unify certain aspects of the theory of Sobolev inequalities. In particular, we discuss our recent papers on fractional order inequalities, Coulhon type inequalities, transference and dimensionless inequalities and our forthcoming work on sharp higher order Sobolev inequalities that can be obtained by iteration.Comment: 39 pages, made some changes to section 1

    Proof-Net as Graph, Taylor Expansion as Pullback

    Get PDF
    We introduce a new graphical representation for multiplicative and exponential linear logic proof-structures, based only on standard labelled oriented graphs and standard notions of graph theory. The inductive structure of boxes is handled by means of a box-tree. Our proof-structures are canonical and allows for an elegant definition of their Taylor expansion by means of pullbacks
    • …
    corecore