443 research outputs found

    Low-Energy Electron-Track Imaging for a Liquid Argon Time-Projection-Chamber Telescope Concept using Probabilistic Deep Learning

    Full text link
    The GammaTPC is an MeV-scale single-phase liquid argon time-projection-chamber gamma-ray telescope concept with a novel dual-scale pixel-based charge-readout system. It promises to enable a significant improvement in sensitivity to MeV-scale gamma-rays over previous telescopes. The novel pixel-based charge readout allows for imaging of the tracks of electrons scattered by Compton interactions of incident gamma-rays. The two primary contributors to the accuracy of a Compton telescope in reconstructing an incident gamma-ray's original direction are its energy and position resolution. In this work, we focus on using deep learning to optimize the reconstruction of the initial position and direction of electrons scattered in Compton interactions, including using probabilistic models to estimate predictive uncertainty. We show that the deep learning models are able to predict locations of Compton scatters of MeV-scale gamma-rays from simulated pixel-based data to better than 0.6 mm RMS error, and are sensitive to the initial direction of the scattered electron. We compare and contrast different deep learning uncertainty estimation algorithms for reconstruction applications. Additionally, we show that event-by-event estimates of the uncertainty of the locations of the Compton scatters can be used to select those events that were reconstructed most accurately, leading to improvement in locating the origin of gamma-ray sources on the sky

    Exclusion limits on the WIMP-nucleon cross-section from the Cryogenic Dark Matter Search

    Get PDF
    The Cryogenic Dark Matter Search (CDMS) employs low-temperature Ge and Si detectors to search for Weakly Interacting Massive Particles (WIMPs) via their elastic-scattering interactions with nuclei while discriminating against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.9% efficiency, and surface events are rejected with >95% efficiency. The estimate of the background due to neutrons is based primarily on the observation of multiple-scatter events that should all be neutrons. Data selection is determined primarily by examining calibration data and vetoed events. Resulting efficiencies should be accurate to about 10%. Results of CDMS data from 1998 and 1999 with a relaxed fiducial-volume cut (resulting in 15.8 kg-days exposure on Ge) are consistent with an earlier analysis with a more restrictive fiducial-volume cut. Twenty-three WIMP candidate events are observed, but these events are consistent with a background from neutrons in all ways tested. Resulting limits on the spin-independent WIMP-nucleon elastic-scattering cross-section exclude unexplored parameter space for WIMPs with masses between 10-70 GeV c^{-2}. These limits border, but do not exclude, parameter space allowed by supersymmetry models and accelerator constraints. Results are compatible with some regions reported as allowed at 3-sigma by the annual-modulation measurement of the DAMA collaboration. However, under the assumptions of standard WIMP interactions and a standard halo, the results are incompatible with the DAMA most likely value at >99.9% CL, and are incompatible with the model-independent annual-modulation signal of DAMA at 99.99% CL in the asymptotic limit.Comment: 40 pages, 49 figures (4 in color), submitted to Phys. Rev. D; v.2:clarified conclusions, added content and references based on referee's and readers' comments; v.3: clarified introductory sections, added figure based on referee's comment

    Model-Independent Comparison of Direct vs. Indirect Detection of Supersymmetric Dark Matter

    Get PDF
    We compare the rate for elastic scattering of neutralinos from various nuclei with the flux of upward muons induced by energetic neutrinos from neutralino annihilation in the Sun and Earth. We consider both scalar and axial-vector interactions of neutralinos with nuclei. We find that the event rate in a kg of germanium is roughly equivalent to that in a 10510^5- to 10710^7-m2^2 muon detector for a neutralino with primarily scalar coupling to nuclei. For an axially coupled neutralino, the event rate in a 50-gram hydrogen detector is roughly the same as that in a 10- to 500-m2^2 muon detector. Expected experimental backgrounds favor forthcoming elastic-scattering detectors for scalar couplings while the neutrino detectors have the advantage for axial-vector couplings.Comment: 10 pages, self-unpacking uuencoded PostScript fil

    3D Position Sensitive XeTPC for Dark Matter Search

    Get PDF
    The technique to realize 3D position sensitivity in a two-phase xenon time projection chamber (XeTPC) for dark matter search is described. Results from a prototype detector (XENON3) are presented.Comment: Presented at the 7th UCLA Symposium on "Sources and Detection of Dark Matter and Dark Energy in the Universe

    Indirect Detection of a Light Higgsino Motivated by Collider Data

    Get PDF
    Kane and Wells recently argued that collider data point to a Higgsino-like lightest supersymmetric partner which would explain the dark matter in our Galactic halo. They discuss direct detection of such dark-matter particles in laboratory detectors. Here, we argue that such a particle, if it is indeed the dark matter, might alternatively be accessible in experiments which search for energetic neutrinos from dark-matter annihilation in the Sun. We provide accurate analytic estimates for the rates which take into account all relevant physical effects. Currently, the predicted signal falls roughly one to three orders of magnitude below experimental bounds, depending on the mass and coupling of the particle; however, detectors such as MACRO, super-Kamiokande, and AMANDA will continue to take data and should be able to rule out or confirm an interesting portion of the possible mass range for such a dark-matter particle within the next five years.Comment: 10 pages, RevTe

    First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

    Full text link
    The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 x 10^{-44} cm^2 for a WIMP mass of 100 GeV/c^2, and 4.5 x 10^{-44} cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.Comment: accepted for publication in Phys. Rev. Let

    A search for light dark matter in XENON10 data

    Full text link
    We report results of a search for light (<10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections \sigma_n>3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.Comment: Manuscript identical to v2 (published version) but also contains erratum. Note v3==v2 but without \linenumber
    • …
    corecore