Abstract

Kane and Wells recently argued that collider data point to a Higgsino-like lightest supersymmetric partner which would explain the dark matter in our Galactic halo. They discuss direct detection of such dark-matter particles in laboratory detectors. Here, we argue that such a particle, if it is indeed the dark matter, might alternatively be accessible in experiments which search for energetic neutrinos from dark-matter annihilation in the Sun. We provide accurate analytic estimates for the rates which take into account all relevant physical effects. Currently, the predicted signal falls roughly one to three orders of magnitude below experimental bounds, depending on the mass and coupling of the particle; however, detectors such as MACRO, super-Kamiokande, and AMANDA will continue to take data and should be able to rule out or confirm an interesting portion of the possible mass range for such a dark-matter particle within the next five years.Comment: 10 pages, RevTe

    Similar works