536 research outputs found

    Interplanetary energetic particle observations of the March 1989 events

    Get PDF
    The IMP-8 spacecraft placed in an elongated orbit of approximately R(sub E) x R(sub E) orbit around the Earth was the only monitor of the energetic particle environment of the near interplanetary space during the period of the solar particle events associated with the Active Region 5395 in March 1989. Measurements of energetic ion and electron intensities were obtained in a series of channels within the energy range: 0.3 to 440 MeV for photons, 0.6 to 52 MeV/nuc for alpha particles, 0.7 to 3.3 MeV/nuc for nuclei with Z greater than or equal to 3, 3 to 9 MeV/nuc with Z greater than or equal to 20, and 0.2 to 2.5 MeV for electrons. The responses of selected energy channels during the period 5 to 23 March 1989 are displayed. It is clearly noted that the most prominent energetic ion intensity enhancements in that time interval were associated with the interplanetary shock wave of March 13 (07:42 UT) as well as that of March 8 (17:56 UT), which have distinct particle acceleration signatures. These shock waves play a major role in determining the near Earth energetic ion intensities during the above period by accelerating and modulating the ambient solar energetic particle population, which was already present in high intensities in the interplanetary medium due to the superposition of a series of solar flare particle events originating in AR 5395. The differential ion intensities at the lowest energy channel of the CPME experiment, which were associated with the March 13 shock wave, reached the highest level in the life of the IMP-8 spacecraft at this energy. At high energies, the shock associated intensity peak was smaller by less than a factor of 3 than the maxima of solar flare particle intensities from some other major flares, in particular from those with sites well connected to the Earth's magnetic flux tubes

    Acceleration of ions and electrons to near-cosmic ray energies in a perpendicular shock: The January 6, 1978 event

    Get PDF
    Acceleration of energetic ions to approx 200 MeV and electrons to approx 2 MeV were detected by the Low Energy Charged Particle (LECP) instrument on Voyager 2 in association with a quasiperpendicular shock of theta sub Bn - 87.5 deg at 1.9 AU. The measurments, obtained at a time resolution of approx. 1.2 sec, reveal structure of the energetic particle intensity enhancements down to a scale of the order of the particle gyroradius, and suggest that acceleration takes place within a gyrodiameter of the shock. The observations are consistent with the prediction of the shock drift acceleration (SDA) mechanism. The absence of any fluctuations in the magnetic field during the shock passage suggest that turbulence is not essential to the shock acceleration process in the interplanetary medium

    Magnetic topology of coronal mass ejection events out of the ecliptic: Ulysses/HI-SCALE energetic particle observations

    No full text
    International audienceSolar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude

    Probing the magnetic topology of coronal mass ejections by means of Ulysses/HI-SCALE energetic particle observations

    No full text
    International audienceIn this work, solar flare energetic particle fluxes (Ee ? 42 keV) observed by the HI-SCALE instrument onboard Ulysses, a spacecraft that is probing the heliosphere in 3-D, are utilized as diagnostics of the large-scale structure and topology of the interplanetary magnetic field (IMF) embedded within two well-identified interplanetary coronal mass ejection (ICME) structures. On the basis of the energetic solar flare particle observations firm conclusions are drawn on whether the detected ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at 2.5 AU. From the development of the angular distributions of the particle intensities, we have inferred that portions of the ICMEs studied consisted of both open and closed magnetic field lines. Both ICMEs present a filamentary structure comprising magnetic filaments with distinct electron anisotropy characteristics. Subsequently, we studied the evolution of the anisotropies of the energetic electrons along the magnetic field loop-like structure of one ICME and computed the characteristic decay time of the anisotropy which is a measure of the amount of scattering that the trapped electron population underwent after injection at the Sun

    A Location Privacy Extension for DVB-RCS

    Get PDF
    In this paper we studied the DVB-RCS (Return Channel through Satellite) standard from a privacy perspective and proposed an approach to incorporate a location privacy enhancing mechanism into the standard. Offering location based privacy in DVB-RCS communication is a challenge as the location of a satellite terminal must be revealed to the network operator of the DVB-RCS network for technical and administrative reasons. We proposed an approach of cloaking the location by intentionally compromising its accuracy whilst maintaining the operability and integrity of the communications system. In addition we implemented a proof of concept technique utilizing the theoretical findings of this work on a real DVB-RCS system, presenting the methodology along with the tools used and the experimental results

    First year student expectations: Results from a university-wide student survey

    Get PDF
    Although much has been written on the first-year experience of students at higher education institutions, less attention has been directed to the expectations of students when they enter an institution for the first time. This paper provides additional insights into the expectations of students at an Australian university and highlights areas in which students’ expectations may not necessarily align with the realities of common university practices. By providing opportunities for students to articulate their expectations, staff are able to use the responses for a constructive dialogue and work towards a more positive alignment between perceived expectations and levels of student satisfaction with their experience.Geoffrey Crisp, Edward Palmer, Deborah Turnbull, Ted Nettelbeck, Lynn Ward, Amanda LeCouteur, Aspa Sarris, Peter Strelan, and Luke Schneide
    corecore