151 research outputs found

    CFTR displays voltage dependence and two gating modes during stimulation.

    Full text link

    Intake, digestibility, and growth by steers compared under continuous and frontal grazing

    Get PDF
    Last updated: 10/22/201

    Topical NSAIDs for acute pain: a meta-analysis

    Get PDF
    BACKGROUND: A previous systematic review reported that topical NSAIDs were effective in relieving pain in acute conditions like sprains and strains, with differences between individual drugs for efficacy. More trials, a better understanding of trial quality and bias, and a reclassification of certain drugs necessitate a new review. METHODS: Studies were identified by searching electronic databases and writing to manufacturers. We selected randomised double blind trials comparing topical NSAID with either placebo or another active treatment in adults with acute pain, and extracted dichotomous information approximating to a 50% reduction in pain at one week, together with details of adverse events and withdrawals. Relative benefit and number-needed-to-treat (NNT), and relative risk and number-needed-to-harm (NNH) were calculated, with sensitivity analyses where appropriate to investigate differences between individual drugs and aspects of trial design. RESULTS: Twenty-six double blind placebo controlled trials had information from 2,853 patients for evaluation of efficacy. Topical NSAID was significantly better than placebo in 19 of the 26 trials, with a pooled relative benefit of 1.6 (95% confidence interval 1.4 to 1.7), and NNT of 3.8 (95% confidence interval 3.4 to 4.4) compared with placebo for the outcome of half pain relief at seven days. Results were not affected by outcome reported, or condition treated, but smaller trials yielded a larger estimate of efficacy. Indirect comparisons of individual topical NSAIDs showed that ketoprofen was significantly better than all other topical NSAIDs, while indomethacin was barely distinguished from placebo. Three trials, with 433 patients, compared topical with oral NSAID (two trials compared the same drug, one compared different drugs) and found no difference in efficacy. Local adverse events, systemic adverse events, or withdrawals due to an adverse event were rare, and no different between topical NSAID and placebo. CONCLUSIONS: Topical NSAIDs were effective and safe in treating acute painful conditions for one week

    Eicosanoid Release Is Increased by Membrane Destabilization and CFTR Inhibition in Calu-3 Cells

    Get PDF
    The antiinflammatory protein annexin-1 (ANXA1) and the adaptor S100A10 (p11), inhibit cytosolic phospholipase A2 (cPLA2α) by direct interaction. Since the latter is responsible for the cleavage of arachidonic acid at membrane phospholipids, all three proteins modulate eicosanoid production. We have previously shown the association of ANXA1 expression with that of CFTR, the multifactorial protein mutated in cystic fibrosis. This could in part account for the abnormal inflammatory status characteristic of this disease. We postulated that CFTR participates in the regulation of eicosanoid release by direct interaction with a complex containing ANXA1, p11 and cPLA2α. We first analyzed by plasmon surface resonance the in vitro binding of CFTR to the three proteins. A significant interaction between p11 and the NBD1 domain of CFTR was found. We observed in Calu-3 cells a rapid and partial redistribution of all four proteins in detergent resistant membranes (DRM) induced by TNF-α. This was concomitant with increased IL-8 synthesis and cPLA2α activation, ultimately resulting in eicosanoid (PGE2 and LTB4) overproduction. DRM destabilizing agent methyl-β-cyclodextrin induced further cPLA2α activation and eicosanoid release, but inhibited IL-8 synthesis. We tested in parallel the effect of short exposure of cells to CFTR inhibitors Inh172 and Gly-101. Both inhibitors induced a rapid increase in eicosanoid production. Longer exposure to Inh172 did not increase further eicosanoid release, but inhibited TNF-α-induced relocalization to DRM. These results show that (i) CFTR may form a complex with cPLA2α and ANXA1 via interaction with p11, (ii) CFTR inhibition and DRM disruption induce eicosanoid synthesis, and (iii) suggest that the putative cPLA2/ANXA1/p11/CFTR complex may participate in the modulation of the TNF-α-induced production of eicosanoids, pointing to the importance of membrane composition and CFTR function in the regulation of inflammation mediator synthesis

    Inflammasome-Mediated IL-1β Production in Humans with Cystic Fibrosis

    Get PDF
    Inflammation and infection are major determinants of disease severity and consequently, the quality of life and outcome for patients with cystic fibrosis (CF). Interleukin-1 beta (IL-1β) is a key inflammatory mediator. Secretion of biologically active IL-1β involves inflammasome-mediated processing. Little is known about the contribution of IL-1β and the inflammasomes in CF inflammatory disease. This study examines inflammasome-mediated IL-1β production in CF bronchial epithelial cell lines and human patients with CF.Bronchial epithelial cell lines were found to produce negligible amounts of basal or stimulated IL-1β compared to hematopoeitic cells and they did not significantly upregulate caspase-1 activity upon inflammasome stimulation. In contrast, peripheral blood mononuclear cells (PBMCs) from both CF and healthy control subjects produced large amounts of IL-1β and strongly upregulated caspase-1 activity upon inflammasome stimulation. PBMCs from CF patients and controls displayed similar levels of caspase-1 activation and IL-1β production when stimulated with inflammasome activators. This IL-1β production was dependent on NF-κB activity and could be enhanced by priming with LPS. Finally, chemical inhibition of CFTR activity in control PBMCs and THP-1 cells did not significantly alter IL-1β or IL-8 production in response to P. aeruginosa.Hematopoeitic cells appear to be the predominant source of inflammasome-induced pro-inflammatory IL-1β in CF. PBMCs derived from CF subjects display preserved inflammasome activation and IL-1β secretion in response to the major CF pathogen Pseudomonas aeruginosa. However, our data do not support the hypothesis that increased IL-1β production in CF subjects is due to an intrinsic increase in NF-κB activity through loss of CFTR function

    Mechanisms of the noxious inflammatory cycle in cystic fibrosis

    Get PDF
    Multiple evidences indicate that inflammation is an event occurring prior to infection in patients with cystic fibrosis. The self-perpetuating inflammatory cycle may play a pathogenic part in this disease. The role of the NF-κB pathway in enhanced production of inflammatory mediators is well documented. The pathophysiologic mechanisms through which the intrinsic inflammatory response develops remain unclear. The unfolded mutated protein cystic fibrosis transmembrane conductance regulator (CFTRΔF508), accounting for this pathology, is retained in the endoplasmic reticulum (ER), induces a stress, and modifies calcium homeostasis. Furthermore, CFTR is implicated in the transport of glutathione, the major antioxidant element in cells. CFTR mutations can alter redox homeostasis and induce an oxidative stress. The disturbance of the redox balance may evoke NF-κB activation and, in addition, promote apoptosis. In this review, we examine the hypotheses of the integrated pathogenic processes leading to the intrinsic inflammatory response in cystic fibrosis

    Claudins in renal physiology and disease

    Get PDF
    The tight junction forms the paracellular permeability barrier in all epithelia, including the renal tubule. Claudins are a family of tight junction membrane proteins with four transmembrane domains that form the paracellular pore and barrier. Their first extracellular domain appears to be important for determining selectivity. A number of claudin isoforms have been found to be important in renal tubule function, both in adults and in neonates. Familial hypomagnesemic hypercalciuria with nephrocalcinosis is an autosomal recessive syndrome characterized by impaired reabsorption of Mg and Ca in the thick ascending limb of Henle's loop. Mutations in claudin-16 and 19 can both cause this syndrome, but the pathophysiological mechanism remains controversial

    Purinergic signalling and immune cells

    Get PDF
    This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells

    The tyrosine kinase p60c-src regulates the fast gate of the cystic fibrosis transmembrane conductance regulator chloride channel.

    Get PDF
    The role of the tyrosine kinase p60c-src on the gating of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel was investigated with the cell-attached and excised patch clamp technique in conjunction with current noise analysis of recordings containing multiple channels per patch. Spectra of CFTR-generated current noise contained a low-frequency and a high-frequency Lorentzian noise component. In the cell-attached mode, the high-frequency Lorentzian was significantly dependent on the membrane potential, while the low-frequency Lorentzian was unaffected. Excision of forskolin-stimulated patches into ATP-containing solution significantly reduced the amplitude of the voltage-dependent high-frequency Lorentzian. Addition of the tyrosine kinase p60c-src to excised, active, CFTR-containing membrane patches increased mean currents by 54%, increased the corner frequency of the low-frequency Lorentzian, and recovered the high-frequency Lorentzian and its characteristics. Treatment with lambda-phosphatase inactivated src-induced currents and changes in gating. When active patches were excised under conditions in which patch-associated tyrosine phosphatases were blocked with sodium vanadate, the high-frequency gating remained relatively unchanged. The results suggest that CFTR's open probability and its voltage-dependent fast gate are dependent on tyrosine phosphorylation, and that membrane-associated tyrosine phosphatases are responsible for inactivation of the fast gate after patch excision
    corecore