48 research outputs found

    Diagnostic examination of the child with urolithiasis or nephrocalcinosis

    Get PDF
    Urolithiasis and nephrocalcinosis are more frequent in children then currently anticipated, but still remain under- or misdiagnosed in a significant proportion of patients, since symptoms and signs may be subtle or misleading. All children with colicky abdominal pain or macroscopic hematuria should be examined thoroughly for urolithiasis. Also, other, more general, abdominal manifestations can be the first symptoms of renal stones. The patients and their family histories, as well as physical examination, are important initial steps for diagnostic evaluation. Thereafter, diagnostic imaging should be aimed at the location of calculi but also at identification of urinary tract anomalies or acute obstruction due to stone disease. This can often be accomplished by ultrasound examination alone, but sometimes radiological methods such as plain abdominal films or more sensitive non-enhanced computed tomography are necessary. Since metabolic causes are frequent in children, diagnostic evaluation should be meticulous so that metabolic disorders that cause recurrent urolithiasis or even renal failure, such as the primary hyperoxalurias and others, can be ruled out. The stone is not the disease itself; it is only one serious sign! Therefore, thorough and early diagnostic examination is mandatory for every infant and child with the first stone event, or with nephrocalcinosis

    ACE (I/D) polymorphism and response to treatment in coronary artery disease: a comprehensive database and meta-analysis involving study quality evaluation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of angiotensin-converting enzyme (<it>ACE</it>) gene insertion/deletion (<it>I/D</it>) polymorphism in modifying the response to treatment modalities in coronary artery disease is controversial.</p> <p>Methods</p> <p>PubMed was searched and a database of 58 studies with detailed information regarding <it>ACE I/D </it>polymorphism and response to treatment in coronary artery disease was created. Eligible studies were synthesized using meta-analysis methods, including cumulative meta-analysis. Heterogeneity and study quality issues were explored.</p> <p>Results</p> <p>Forty studies involved invasive treatments (coronary angioplasty or coronary artery by-pass grafting) and 18 used conservative treatment options (including anti-hypertensive drugs, lipid lowering therapy and cardiac rehabilitation procedures). Clinical outcomes were investigated by 11 studies, while 47 studies focused on surrogate endpoints. The most studied outcome was the restenosis following coronary angioplasty (34 studies). Heterogeneity among studies (p < 0.01) was revealed and the risk of restenosis following balloon angioplasty was significant under an additive model: the random effects odds ratio was 1.42 (95% confidence interval:1.07–1.91). Cumulative meta-analysis showed a trend of association as information accumulates. The results were affected by population origin and study quality criteria. The meta-analyses for the risk of restenosis following stent angioplasty or after angioplasty and treatment with angiotensin-converting enzyme inhibitors produced non-significant results. The allele contrast random effects odds ratios with the 95% confidence intervals were 1.04(0.92–1.16) and 1.10(0.81–1.48), respectively. Regarding the effect of <it>ACE I/D </it>polymorphism on the response to treatment for the rest outcomes (coronary events, endothelial dysfunction, left ventricular remodeling, progression/regression of atherosclerosis), individual studies showed significance; however, results were discrepant and inconsistent.</p> <p>Conclusion</p> <p>In view of available evidence, genetic testing of <it>ACE I/D </it>polymorphism prior to clinical decision making is not currently justified. The relation between <it>ACE </it>genetic variation and response to treatment in CAD remains an unresolved issue. The results of long-term and properly designed prospective studies hold the promise for pharmacogenetically tailored therapy in CAD.</p

    Nitric oxide and cyclic nucleotides: Their roles in junction dynamics and spermatogenesis

    Get PDF
    Spermatogenesis is a highly complicated process in which functional spermatozoa (haploid, 1n) are generated from primitive mitotic spermatogonia (diploid, 2n). This process involves the differentiation and transformation of several types of germ cells as spermatocytes and spermatids undergo meiosis and differentiation. Due to its sophistication and complexity, testis possesses intrinsic mechanisms to modulate and regulate different stages of germ cell development under the intimate and indirect cooperation with Sertoli and Leydig cells, respectively. Furthermore, developing germ cells must translocate from the basal to the apical (adluminal) compartment of the seminiferous epithelium. Thus, extensive junction restructuring must occur to assist germ cell movement. Within the seminiferous tubules, three principal types of junctions are found namely anchoring junctions, tight junctions, and gap junctions. Other less studied junctions are desmosome-like junctions and hemidesmosome junctions. With these varieties of junction types, testes are using different regulators to monitor junction turnover. Among the uncountable junction modulators, nitric oxide (NO) is a prominent candidate due to its versatility and extensive downstream network. NO is synthesized by nitric oxide synthase (NOS). Three traditional NOS, specified as endothelial NOS (eNOS), inducible NOS (iNOS), and neuronal NOS (nNOS), and one testis-specific nNOS (TnNOS) are found in the testis. For these, eNOS and iNOS were recently shown to have putative junction regulation properties. More important, these two NOSs likely rely on the downstream soluble guanylyl cyclase/cGMP/protein kinase G signaling pathway to regulate the structural components at the tight junctions and adherens junctions in the testes. Apart from the involvement in junction regulation, NOS/NO also participates in controlling the levels of cytokines and hormones in the testes. On the other hand, NO is playing a unique role in modulating germ cell viability and development, and indirectly acting on some aspects of male infertility and testicular pathological conditions. Thus, NOS/NO bears an irreplaceable role in maintaining the homeostasis of the microenvironment in the seminiferous epithelium via its different downstream signaling pathways

    The nucleotide sequence of Saccharomyces cerevisiae chromosome VII.

    No full text
    The complete nucleotide sequence of Saccharomyces cerevisiae chromosome VII has 572 predicted open reading frames (ORFs), of which 341 are new. No correlation was found between G+C content and gene density along the chromosome, and their variations are random. Of the ORFs, 17% show high similarity to human proteins. Almost half of the ORFs could be classified in functional categories, and there is a slight increase in the number of transcription (7.0%) and translation (5.2%) factors when compared with the complete S. cerevisiae genome. Accurate verification procedures demonstrate that there are less than two errors per 10,000 base pairs in the published sequence
    corecore