399 research outputs found

    The UTMOST: A hybrid digital signal processor transforms the MOST

    Get PDF
    The Molonglo Observatory Synthesis Telescope (MOST) is an 18,000 square meter radio telescope situated some 40 km from the city of Canberra, Australia. Its operating band (820-850 MHz) is now partly allocated to mobile phone communications, making radio astronomy challenging. We describe how the deployment of new digital receivers (RX boxes), Field Programmable Gate Array (FPGA) based filterbanks and server-class computers equipped with 43 GPUs (Graphics Processing Units) has transformed MOST into a versatile new instrument (the UTMOST) for studying the dynamic radio sky on millisecond timescales, ideal for work on pulsars and Fast Radio Bursts (FRBs). The filterbanks, servers and their high-speed, low-latency network form part of a hybrid solution to the observatory's signal processing requirements. The emphasis on software and commodity off-the-shelf hardware has enabled rapid deployment through the re-use of proven 'software backends' for its signal processing. The new receivers have ten times the bandwidth of the original MOST and double the sampling of the line feed, which doubles the field of view. The UTMOST can simultaneously excise interference, make maps, coherently dedisperse pulsars, and perform real-time searches of coherent fan beams for dispersed single pulses. Although system performance is still sub-optimal, a pulsar timing and FRB search programme has commenced and the first UTMOST maps have been made. The telescope operates as a robotic facility, deciding how to efficiently target pulsars and how long to stay on source, via feedback from real-time pulsar folding. The regular timing of over 300 pulsars has resulted in the discovery of 7 pulsar glitches and 3 FRBs. The UTMOST demonstrates that if sufficient signal processing can be applied to the voltage streams it is possible to perform innovative radio science in hostile radio frequency environments.Comment: 12 pages, 6 figure

    A new layout optimization technique for interferometric arrays, applied to the MWA

    Get PDF
    Antenna layout is an important design consideration for radio interferometers because it determines the quality of the snapshot point spread function (PSF, or array beam). This is particularly true for experiments targeting the 21 cm Epoch of Reionization signal as the quality of the foreground subtraction depends directly on the spatial dynamic range and thus the smoothness of the baseline distribution. Nearly all sites have constraints on where antennas can be placed---even at the remote Australian location of the MWA (Murchison Widefield Array) there are rock outcrops, flood zones, heritages areas, emergency runways and trees. These exclusion areas can introduce spatial structure into the baseline distribution that enhance the PSF sidelobes and reduce the angular dynamic range. In this paper we present a new method of constrained antenna placement that reduces the spatial structure in the baseline distribution. This method not only outperforms random placement algorithms that avoid exclusion zones, but surprisingly outperforms random placement algorithms without constraints to provide what we believe are the smoothest constrained baseline distributions developed to date. We use our new algorithm to determine antenna placements for the originally planned MWA, and present the antenna locations, baseline distribution, and snapshot PSF for this array choice.Comment: 12 pages, 6 figures, 1 table. Accepted for publication in MNRA

    The Murchison Widefield Array: the Square Kilometre Array Precursor at low radio frequencies

    Full text link
    The Murchison Widefield Array (MWA) is one of three Square Kilometre Array Precursor telescopes and is located at the Murchison Radio-astronomy Observatory in the Murchison Shire of the mid-west of Western Australia, a location chosen for its extremely low levels of radio frequency interference. The MWA operates at low radio frequencies, 80-300 MHz, with a processed bandwidth of 30.72 MHz for both linear polarisations, and consists of 128 aperture arrays (known as tiles) distributed over a ~3 km diameter area. Novel hybrid hardware/software correlation and a real-time imaging and calibration systems comprise the MWA signal processing backend. In this paper the as-built MWA is described both at a system and sub-system level, the expected performance of the array is presented, and the science goals of the instrument are summarised.Comment: Submitted to PASA. 11 figures, 2 table

    Interferometric imaging with the 32 element Murchison Wide-field Array

    Get PDF
    The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.Comment: Accepted for publication in PASP. This is the draft before journal typesetting corrections and proofs so does contain formatting and journal style errors, also has with lower quality figures for space requirement

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Application of pharmacogenomics and bioinformatics to exemplify the utility of human <i>ex vivo</i> organoculture models in the field of precision medicine

    Get PDF
    Here we describe a collaboration between industry, the National Health Service (NHS) and academia that sought to demonstrate how early understanding of both pharmacology and genomics can improve strategies for the development of precision medicines. Diseased tissue ethically acquired from patients suffering from chronic obstructive pulmonary disease (COPD), was used to investigate inter-patient variability in drug efficacy using ex vivo organocultures of fresh lung tissue as the test system. The reduction in inflammatory cytokines in the presence of various test drugs was used as the measure of drug efficacy and the individual patient responses were then matched against genotype and microRNA profiles in an attempt to identify unique predictors of drug responsiveness. Our findings suggest that genetic variation in CYP2E1 and SMAD3 genes may partly explain the observed variation in drug response

    The Murchison Widefield Array

    Get PDF
    It is shown that the excellent Murchison Radio-astronomy Observatory site allows the Murchison Widefield Array to employ a simple RFI blanking scheme and still calibrate visibilities and form images in the FM radio band. The techniques described are running autonomously in our calibration and imaging software, which is currently being used to process an FM-band survey of the entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016]. 6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland

    The EoR Sensitivity of the Murchison Widefield Array

    Get PDF
    Using the final 128 antenna locations of the Murchison Widefield Array (MWA), we calculate its sensitivity to the Epoch of Reionization (EoR) power spectrum of red- shifted 21 cm emission for a fiducial model and provide the tools to calculate the sensitivity for any model. Our calculation takes into account synthesis rotation, chro- matic and asymmetrical baseline effects, and excludes modes that will be contaminated by foreground subtraction. For the fiducial model, the MWA will be capable of a 14{\sigma} detection of the EoR signal with one full season of observation on two fields (900 and 700 hours).Comment: 5 pages, 4 figures, 1 table, Accepted for publication in MNRAS Letters. Supplementary material will be available in the published version, or by contacting the author
    corecore