184 research outputs found
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Measurement of the F2 structure function in deep inelastic ep scattering using 1994 data from the ZEUS detector at HERA
We present measurements of the structure function \Ft\ in e^+p scattering at HERA in the range 3.5\;\Gevsq < \qsd < 5000\;\Gevsq. A new reconstruction method has allowed a significant improvement in the resolution of the kinematic variables and an extension of the kinematic region covered by the experiment. At \qsd < 35 \;\Gevsq the range in x now spans 6.3\cdot 10^{-5} < x < 0.08 providing overlap with measurements from fixed target experiments. At values of Q^2 above 1000 GeV^2 the x range extends to 0.5. Systematic errors below 5\perc\ have been achieved for most of the kinematic urray, W
Measurement of Elastic Photoproduction at HERA
The production of mesons in the reaction () at a median of $10^{-4} \
\rm{GeV^2}\phid\sigma/dt0.1<|t|<0.5 \ \rm{GeV^2}60 <
W < 80 \ \rm{GeV}\sigma_{\gamma p
\rightarrow \phi p} = 0.96 \pm 0.19^{+0.21}_{-0.18}\rm{\mu b}\sigma_{\gamma p \rightarrow
\phi p}t\phis\phi$ photoproduction are
compatible with those of a soft diffractive process.Comment: 23 pages, including 6 post script figure
Comparison of ZEUS data with standard model predictions for scattering at high and
Using the ZEUS detector at HERA, we have studied the reaction e(+)p --> e(+)X for Q(2) > 5000 GeV2 with a 20.1 pb(-1) data sample collected during the years 1993 to 1996. For Q(2) below 15000 GeV2, the data are in good agreement with Standard Model expectations. For Q(2) > 35000 GeV2. two events are observed while 0.145 +/- 0.013 events are expected, A statistical analysis of a large ensemble of simulated Standard Model experiments indicates that with probability 6.0%, an excess at least as unlikely as that observed would occur above some Q(2) cut. For x > 0.55 and y > 0.75, four events are observed where 0.91 +/- 0.08 events are expected, A statistical analysis of the two-dimensional distribution of the events in x and y yields a probability of 0.72% for the region x > 0.55 and y > 0.25 and a probability of 7.8% for the entire Q(2) > 5000 GeV2 data sample. The observed excess above Standard Model expectations is particularly interesting because it occurs in a previously unexplored kinematic region
Measurement of the reaction in deep inelastic scattering at HERA
The production of phi mesons in the reaction e(+)p --> e(+)phi p (phi --> K+K-), for 7 phi p cross section rises strongly with W. This behaviour is similar to that previously found for the gamma*p --> rho(0)p cross section. This strong dependence cannot be explained by production through soft pomeron exchange, It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small x. The ratio of sigma(phi)/sigma(rho(0)), which has previously been determined by ZEUS to be 0.065 +/- 0.013 (stat.) in photoproduction at a mean W of 70 GeV, is measured to be 0.18 +/- 0.05 (stat.) +/- 0.03 (syst.) at a mean Q(2) of 12.3 GeV2 and mean W of approximate to 100 GeV and is thus approaching at large Q(2) the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism
Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA
In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2
Measurement of the reaction gamma*p->phi p in deep, inelastic e(+)p scattering at HERA
The production of phi mesons in the reaction e(+)p --> e(+)phi p (phi --> K+K-), for 7 phi p cross section rises strongly with W. This behaviour is similar to that previously found for the gamma*p --> rho(0)p cross section. This strong dependence cannot be explained by production through soft pomeron exchange, It is, however, consistent with perturbative QCD expectations, where it reflects the rise of the gluon momentum density in the proton at small x. The ratio of sigma(phi)/sigma(rho(0)), which has previously been determined by ZEUS to be 0.065 +/- 0.013 (stat.) in photoproduction at a mean W of 70 GeV, is measured to be 0.18 +/- 0.05 (stat.) +/- 0.03 (syst.) at a mean Q(2) of 12.3 GeV2 and mean W of approximate to 100 GeV and is thus approaching at large Q(2) the value of 2/9 predicted from the quark charges of the vector mesons and a flavour independent production mechanism
Study of charged-current ep interactions at Q(2)>200 GeV2 with the ZEUS detector at HERA
Deep inelastic charged-current reactions have been studied in e(+)p and e(-)p collisions at a center of mass energy of about 300 GeV in the kinematic region Q(2)>200 GeV2 and x>0.006 using the ZEUS detector at HERA, The integrated cross sections for Q(2)>200 GeV2 are found to be sigma(e+p-->)=30.3(-4.2 -2.6)(+5.5 +1.6) pb and sigma(e-p-->upsilon X)=54.7(-9.8 -3.4)(+15.9 +2.8) pb. Differential cross sections have been measures as functions of the variables x, y and Q(2). From the measured differential cross sections d sigma/dQ(2), the W boson mass is determined to be M(W)=79(-7 -4)(+8 +4) GeV. Measured jet rates and transverse energy profiles agree with model predictions, A search for charged-current interactions with a large rapidity gap yielded one candidate event, corresponding to a cross section of sigma(e+p-->)(Q(2)>200 GeV2; eta(max)<2.5)=0.8(-0.7)(+1.8)+/-0.1 pb
- …
