3,176 research outputs found

    Neural Network Models for Nuclear Treaty Monitoring: Enhancing the Seismic Signal Pipeline with Deep Temporal Convolution

    Get PDF
    Seismic signal processing at the IDC is critical to global security, facilitating the detection and identification of covert nuclear tests in near-real time. This dissertation details three research studies providing substantial enhancements to this pipeline. Study 1 focuses on signal detection, employing a TCN architecture directly against raw real-time data streams and effecting a 4 dB increase in detector sensitivity over the latest operational methods. Study 2 focuses on both event association and source discrimination, utilizing a TCN-based triplet network to extract source-specific features from three-component seismograms, and providing both a complimentary validation measure for event association and a one-shot classifier for template-based source discrimination. Finally, Study 3 focuses on event localization, and employs a TCN architecture against three-component seismograms in order to confidently predict backazimuth angle and provide a three-fold increase in usable picks over traditional polarization analysis

    Introduction to special section on Recent Advances in the Study of Optical Variability in the Near‐Surface and Upper Ocean

    Get PDF
    Optical variability occurs in the near‐surface and upper ocean on very short time and space scales (e.g., milliseconds and millimeters and less) as well as greater scales. This variability is caused by solar, meteorological, and other physical forcing as well as biological and chemical processes that affect optical properties and their distributions, which in turn control the propagation of light across the air‐sea interface and within the upper ocean. Recent developments in several technologies and modeling capabilities have enabled the investigation of a variety of fundamental and applied problems related to upper ocean physics, chemistry, and light propagation and utilization in the dynamic near‐surface ocean. The purpose here is to provide background for and an introduction to a collection of papers devoted to new technologies and observational results as well as model simulations, which are facilitating new insights into optical variability and light propagation in the ocean as they are affected by changing atmospheric and oceanic conditions

    Distance Measurement of Galaxies to Redshift of 0.1 using the CO-Line Tully-Fisher Relation

    Get PDF
    We report on the first results of a long-term project to derive distances of galaxies at cosmological distances by applying the CO-line width-luminosity relation. We have obtained deep CO-line observations of galaxies at redshifts up to 29,000 km/s using the Nobeyama 45-m mm-wave Telescope, and some supplementary data were obtained by using the IRAM 30-m telescope. We have detected the CO line emission for several galaxies, and used their CO line widths to estimate the absolute luminosities using the line-width-luminosity relation. In order to obtain photometric data and inclination correction, we also performed optical imaging observations of the CO-detected galaxies using the CFHT 3.6-m telescope at high resolution. The radio and optical data have been combined to derive the distance moduli and distances of the galaxies, and Hubble ratios were estimated for these galaxies. We propose that the CO line width-luminosity relation can be a powerful method to derive distances of galaxies to redfhift of z = 0.1 and to derive the Hubble ratio in a significant volume of the universe. Key words: Cosmology - Galaxies: general - Distance scale - CO lineComment: To appear in PASJ, Plain Tex, 3 figures (in 10 ps files

    The Supershell-Molecular Cloud Connection in the Milky Way and Beyond

    Full text link
    The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between HI and 12CO(J=1-0) in supershells. Detailed parsec-resolution case studies of two Milky Way supershells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ~10%.Comment: Proceedings of IAUS 292 - Molecular Gas, Dust, and Star Formation in Galaxies, eds. T. Wong & J. Ott. 4 pages, 3 figure

    Supergiant Shells and Molecular Cloud Formation in the LMC

    Full text link
    We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fraction in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.Comment: 14 pages, 6 figures. Accepted for publication in Ap

    HI Absorption Toward HII Regions at Small Galactic Longitudes

    Get PDF
    We make a comprehensive study of HI absorption toward HII regions located within Galactic longitudes less than 10 degrees. Structures in the extreme inner Galaxy are traced using the longitude-velocity space distribution of this absorption. We find significant HI absorption associated with the Near and Far 3kpc Arms, the Connecting Arm, Banias Clump 1 and the H I Tilted Disk. We also constrain the line of sight distances to HII regions, by using HI absorption spectra together with the HII region velocities measured by radio recombination lines.Comment: Complete figure set available in online version of journal. Accepted by ApJ August 8, 201

    Statistical analysis of general aviation VG-VGH data

    Get PDF
    To represent the loads spectra of general aviation aircraft operating in the Continental United States, VG and VGH data collected since 1963 in eight operational categories were processed and analyzed. Adequacy of data sample and current operational categories, and parameter distributions required for valid data extrapolation were studied along with envelopes of equal probability of exceeding the normal load factor (n sub z) versus airspeed for gust and maneuver loads and the probability of exceeding current design maneuver, gust, and landing impact n sub z limits. The significant findings are included

    Soliton solutions of the Kadomtsev-Petviashvili II equation

    Full text link
    We study a general class of line-soliton solutions of the Kadomtsev-Petviashvili II (KPII) equation by investigating the Wronskian form of its tau-function. We show that, in addition to previously known line-soliton solutions, this class also contains a large variety of new multi-soliton solutions, many of which exhibit nontrivial spatial interaction patterns. We also show that, in general, such solutions consist of unequal numbers of incoming and outgoing line solitons. From the asymptotic analysis of the tau-function, we explicitly characterize the incoming and outgoing line-solitons of this class of solutions. We illustrate these results by discussing several examples.Comment: 28 pages, 4 figure
    corecore