153 research outputs found

    A Color Dual Form for Gauge-Theory Amplitudes

    Full text link
    Recently a duality between color and kinematics has been proposed, exposing a new unexpected structure in gauge theory and gravity scattering amplitudes. Here we propose that the relation goes deeper, allowing us to reorganize amplitudes into a form reminiscent of the standard color decomposition in terms of traces over generators, but with the role of color and kinematics swapped. By imposing additional conditions similar to Kleiss-Kuijf relations between partial amplitudes, the relationship between the earlier form satisfying the duality and the current one is invertible. We comment on extensions to loop level.Comment: 5 pages, 4 figure

    Absence of Three-Loop Four-Point Divergences in N=4 Supergravity

    Full text link
    We compute the coefficient of the potential three-loop divergence in pure N=4 supergravity and show that it vanishes, contrary to expectations from symmetry arguments. The recently uncovered duality between color and kinematics is used to greatly streamline the calculation. We comment on all-loop cancellations hinting at further surprises awaiting discovery at higher loops.Comment: 5 pages, 3 figures; v2 added references and minor correction

    Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes

    Get PDF
    We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills theory in six dimensions, when stripped of their overall momentum and supermomentum delta functions, are covariant with respect to the six-dimensional dual conformal group. Using the generalized unitarity method, we demonstrate that this property is also present for loop amplitudes. Since the six-dimensional amplitudes can be interpreted as massive four-dimensional ones, this implies that the six-dimensional symmetry is also present in the massively regulated four-dimensional maximal super-Yang-Mills amplitudes.Comment: 20 pages, 3 figures, minor clarification, references update

    A Twistor Description of Six-Dimensional N=(1,1) Super Yang-Mills Theory

    Get PDF
    We present a twistor space that describes super null-lines on six-dimensional N=(1,1) superspace. We then show that there is a one-to-one correspondence between holomorphic vector bundles over this twistor space and solutions to the field equations of N=(1,1) super Yang-Mills theory. Our constructions naturally reduce to those of the twistorial description of maximally supersymmetric Yang-Mills theory in four dimensions.Comment: 15 pages, typos fixed, published versio

    Simple superamplitudes in higher dimensions

    Full text link
    We provide simple superspaces based on a formulation of spinor helicity in general even dimensions. As a distinguishing feature these spaces admit a fermionic super-momentum conserving delta function solution to the on-shell supersymmetry Ward identities. Using these solutions, we present beautifully simple formulae for the complete three, four and five point superamplitudes in maximal super Yang-Mills theory in eight dimensions, and for the three and four point superamplitudes in ten dimensional type IIB supergravity. In addition, we discuss the exceptional kinematics of the three point amplitude, and the supersymmetric spinorial BCFW recursion, in general dimensions.Comment: 34 page

    Basics of Generalized Unitarity

    Full text link
    We review generalized unitarity as a means for obtaining loop amplitudes from on-shell tree amplitudes. The method is generally applicable to both supersymmetric and non-supersymmetric amplitudes, including non-planar contributions. Here we focus mainly on N=4 Yang-Mills theory, in the context of on-shell superspaces. Given the need for regularization at loop level, we also review a six-dimensional helicity-based superspace formalism and its application to dimensional and massive regularizations. An important feature of the unitarity method is that it offers a means for carrying over any identified tree-level property of on-shell amplitudes to loop level, though sometimes in a modified form. We illustrate this with examples of dual conformal symmetry and a recently discovered duality between color and kinematics.Comment: 37 pages, 10 figures. Invited review for a special issue of Journal of Physics A devoted to "Scattering Amplitudes in Gauge Theories", R. Roiban(ed), M. Spradlin(ed), A. Volovich(ed

    Dualities for Loop Amplitudes of N=6 Chern-Simons Matter Theory

    Get PDF
    In this paper we study the one- and two-loop corrections to the four-point amplitude of N=6 Chern-Simons matter theory. Using generalized unitarity methods we express the one- and two-loop amplitudes in terms of dual-conformal integrals. Explicit integration by using dimensional reduction gives vanishing one-loop result as expected, while the two-loop result is non-vanishing and matches with the Wilson loop computation. Furthermore, the two-loop correction takes the same form as the one-loop correction to the four-point amplitude of N=4 super Yang-Mills. We discuss possible higher loop extensions of this correspondence between the two theories. As a side result, we extend the method of dimensional reduction for three dimensions to five dimensions where dual conformal symmetry is most manifest, demonstrating significant simplification to the computation of integrals.Comment: 32 pages and 6 figures. v2: minus sign corrections, ref updated v3: Published versio

    Spinor Helicity and Dual Conformal Symmetry in Ten Dimensions

    Full text link
    The spinor helicity formalism in four dimensions has become a very useful tool both for understanding the structure of amplitudes and also for practical numerical computation of amplitudes. Recently, there has been some discussion of an extension of this formalism to higher dimensions. We describe a particular implementation of the spinor-helicity method in ten dimensions. Using this tool, we study the tree-level S-matrix of ten dimensional super Yang-Mills theory, and prove that the theory enjoys a dual conformal symmetry. Implications for four-dimensional computations are discussed.Comment: 24 pages, 1 figure

    The one-loop six-dimensional hexagon integral and its relation to MHV amplitudes in N=4 SYM

    Get PDF
    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral Φ~6\tilde\Phi_6 with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar mathcalN=4\\mathcal{N}=4 super-Yang-Mills theory, Ω(1)\Omega^{(1)} and Ω(2)\Omega^{(2)}. The derivative of Ω(2)\Omega^{(2)} with respect to one of the conformal invariants yields Φ~6\tilde\Phi_6, while another first-order differential operator applied to Φ~6\tilde\Phi_6 yields Ω(1)\Omega^{(1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in mathcalN=4\\mathcal{N}=4 super-Yang-Mills.Comment: 18 pages, 2 figure

    Three particle superstring amplitudes with massive legs

    Full text link
    On-shell superspaces and associated spinor helicity techniques give an efficient formulation of the Ward identities of on-shell supersymmetry for scattering amplitudes and supply tools to construct their solutions. Based on these techniques in this paper the general solutions of the Ward identities are presented for three particle scattering amplitudes with one, two or three massive legs for simple supersymmetry in ten and eight dimensions. It is shown in examples how these solutions may be used to obtain concrete amplitudes for the closed (IIB) and open superstring in a flat background. Explicit results include all three point amplitudes with one massive leg whose functional form is shown to be dictated completely by super-Poincare symmetry. The resulting surprisingly simple series only involves massive superfields labelled by completely symmetric little group representations. The extension to more general explicit three and higher point amplitudes in string theory is initiated. In appendices the field content of the fundamental massive superfields of the open and closed superstring are listed in terms of the Dynkin labels of a variety of groups which may be of independent interest.Comment: 45 pages. v2: typos corrected, references adde
    • …
    corecore