1,173 research outputs found
Soft biomimetic tapered babostructures for large-area antireflective surfaces and SERS sensing
Cataloged from PDF version of article.We report a facile fabrication method for the fabrication of functional large area nanostructured polymer films using a drop casting technique. Reusable and tapered silicon molds were utilized in the production of functional polymers providing rapid fabrication of the paraboloid nanostructures at the desired structural heights without the requirement of any complex production conditions, such as high temperature or pressure. The fabricated polymer films demonstrate promising qualities in terms of antireflective, hydrophobic and surface enhanced Raman spectroscopy (SERS) features. We achieved up to 92% transmission from the single-side nanostructured polymer films by implementing optimized nanostructure parameters which were determined using a finite difference time domain (FDTD) method prior to production. Large-area nanostructured films were observed to enhance the Raman signal with an enhancement factor of 4.9 x 10(6) compared to bare film, making them potentially suitable as freestanding SERS substrates. The utilized fabrication method with its demonstrated performances and reliable material properties, paves the way for further possibilities in biological, optical, and electronic applications
Oscillating epidemics in a dynamic network model: stochastic and mean-field analysis
An adaptive network model using SIS epidemic propagation with link-type-dependent link activation and deletion is considered. Bifurcation analysis of the pairwise ODE approximation and the network-based stochastic simulation is carried out, showing that three typical behaviours may occur; namely, oscillations can be observed besides disease-free or endemic steady states. The oscillatory behaviour in the stochastic simulations is studied using Fourier analysis, as well as through analysing the exact master equations of the stochastic model. By going beyond simply comparing simulation results to mean-field models, our approach yields deeper insights into the observed phenomena and help better understand and map out the limitations of mean-field models
Finite-size scaling for non-linear rheology of fluids confined in a small space
We perform molecular dynamics simulations in order to examine the rheological
transition of fluids confined in a small space. By performing finite-size
scaling analysis, we demonstrate that this rheological transition results from
the competition between the system size and the length scale of cooperative
particle motion.Comment: 4pages, 8 figure
Pluronic polymer capped biocompatible mesoporous silica nanocarriers
A facile self-assembly method is described to prepare PEGylated silica nanocarriers using hydrophobic mesoporous silica nanoparticles and a pluronic F127 polymer. Pluronic capped nanocarriers revealed excellent dispersibility in biological media with cyto- and blood compatibilities. © 2013 The Royal Society of Chemistry
On the origin of the Boson peak in globular proteins
We study the Boson Peak phenomenology experimentally observed in globular
proteins by means of elastic network models. These models are suitable for an
analytic treatment in the framework of Euclidean Random Matrix theory, whose
predictions can be numerically tested on real proteins structures. We find that
the emergence of the Boson Peak is strictly related to an intrinsic mechanical
instability of the protein, in close similarity to what is thought to happen in
glasses. The biological implications of this conclusion are also discussed by
focusing on a representative case study.Comment: Proceedings of the X International Workshop on Disordered Systems,
Molveno (2006
Prognostic significance of incident atrial fibrillation following STEMI depends on the timing of atrial fibrillation
Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide
We investigate the chemical composition and adhesion of chemical vapour
deposited thin-film alumina on TiC using and extending a recently proposed
nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG)
[Rohrer J and Hyldgaard P 2010 Phys. Rev. B 82 045415]. A previous study of
this system [Rohrer J, Ruberto C and Hyldgaard P 2010 J. Phys.: Condens. Matter
22 015004] found that use of equilibrium thermodynamics leads to predictions of
a non-binding TiC/alumina interface, despite the industrial use as a
wear-resistant coating. This discrepancy between equilibrium theory and
experiment is resolved by the AIT-DG method which predicts interfaces with
strong adhesion. The AIT-DG method combines density functional theory
calculations, rate-equation modelling of the pressure evolution of the
deposition environment and thermochemical data. The AIT-DG method was
previously used to predict prevalent terminations of growing or as-deposited
surfaces of binary materials. Here we extent the method to predict surface and
interface compositions of growing or as-deposited thin films on a substrate and
find that inclusion of the nonequilibrium deposition environment has important
implications for the nature of buried interfaces.Comment: 8 pages, 6 figures, submitted to J. Phys.: Condens. Matte
Moment Closure - A Brief Review
Moment closure methods appear in myriad scientific disciplines in the
modelling of complex systems. The goal is to achieve a closed form of a large,
usually even infinite, set of coupled differential (or difference) equations.
Each equation describes the evolution of one "moment", a suitable
coarse-grained quantity computable from the full state space. If the system is
too large for analytical and/or numerical methods, then one aims to reduce it
by finding a moment closure relation expressing "higher-order moments" in terms
of "lower-order moments". In this brief review, we focus on highlighting how
moment closure methods occur in different contexts. We also conjecture via a
geometric explanation why it has been difficult to rigorously justify many
moment closure approximations although they work very well in practice.Comment: short survey paper (max 20 pages) for a broad audience in
mathematics, physics, chemistry and quantitative biolog
Stabilization of a Calcareous Loess With Calcium Lignosulfonate and Aluminum Sulfate
This paper describes a promising method of stabilizing calcareous Wisconsin-age loess with a combination treatment of spent sulfite liquor and aluminum sulfate. The stabilization is thought to be due to formation of water-insoluble basic aluminum lignosulfonate in the compacted soil
- …
