12 research outputs found

    Bias-corrected Pearson estimating functions for Taylor`s power law applied to benthic macrofauna data

    No full text
    Estimation of Taylor`s power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries. (C) 2011 Elsevier B.V. All rights reserved.FAPESPCNPq (Brazil)Danish Natural Science Research Counci

    Bias-corrected Pearson estimating functions for Taylor's power law applied to benthic macrofauna data

    No full text
    Estimation of Taylor's power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.Generalized linear model Newton scoring algorithm Power variance function Species abundance data Tweedie distribution

    Ancient DNA from giant extinct lemurs confirms single origin of Malagasy primates

    No full text
    The living Malagasy lemurs constitute a spectacular radiation of >50 species that are believed to have evolved from a common ancestor that colonized Madagascar in the early Tertiary period. Yet, at least 15 additional Malagasy primate species, some of which were relative giants, succumbed to extinction within the past 2,000 years. Their existence in Madagascar is recorded predominantly in its Holocene subfossil record. To rigorously test the hypothesis that all endemic Malagasy primates constitute a monophyletic group and to determine the evolutionary relationships among living and extinct taxa, we have conducted an ancient DNA analysis of subfossil species. A total of nine subfossil individuals from the extinct genera Palaeopropithecus and Megaladapis yielded amplifiable DNA. Phylogenetic analysis of cytochrome b sequences derived from these subfossils corroborates the monophyly of endemic Malagasy primates. Our results support the close relationship of sloth lemurs to living indriids, as has been hypothesized on morphological grounds. In contrast, Megaladapis does not show a sister-group relationship with the living genus Lepilemur. Thus, the classification of the latter in the family Megaladapidae is misleading. By correlating the geographic location of subfossil specimens with relative amplification success, we reconfirm the global trend of increased success rates of ancient DNA recovery from nontropical localities

    Ecosystem impacts of the widespread non-indigenous species in the Baltic Sea: literature survey evidences major limitations in knowledge

    No full text
    Invasion of non-indigenous species (NIS) is acknowledged as one of the most important external drivers affecting structure and functions of marine ecosystems globally. This paper offers literature-based analysis on the effects of the widespread (occurring in at least 50% of countries) and currently established NIS on ecosystem features in the Baltic Sea. It appears that out of the 18 NIS taxa studied, there are no published records on 28% of NIS for any of the seven impact categories investigated. When ecological impacts are known, laboratory experimental evidence dominates over field studies. Combined observations on impact strength, information type and confidence level suggest that the two benthic invertebrates, the polychaete Marenzelleria spp. and the zebra mussel Dreissena polymorpha (Pallas 1771) exert the highest ecosystem impact. Despite continuously accumulating information on the NIS effects, however, the confidence of findings is still low. Thus, we still understand very little on both the direction and magnitude of the effects of even the most widespread NIS on the structure and dynamics of the Baltic Sea ecosystems. In order to increase reliability of such assessments, future research should be targeted towards spatially-explicit field surveys and experimenting of multitrophic systems, together with modelling of ecosystem impact
    corecore