4,574 research outputs found

    Correlations in ion channel expression emerge from homeostatic tuning rules.

    Get PDF
    Experimental observations reveal that the expression levels of different ion channels vary across neurons of a defined type, even when these neurons exhibit stereotyped electrical properties. However, there are robust correlations between different ion channel expression levels, although the mechanisms that determine these correlations are unknown. Using generic model neurons, we show that correlated conductance expression can emerge from simple homeostatic control mechanisms that couple expression rates of individual conductances to cellular readouts of activity. The correlations depend on the relative rates of expression of different conductances. Thus, variability is consistent with homeostatic regulation and the structure of this variability reveals quantitative relations between regulation dynamics of different conductances. Furthermore, we show that homeostatic regulation is remarkably insensitive to the details that couple the regulation of a given conductance to overall neuronal activity because of degeneracy in the function of multiple conductances and can be robust to "antihomeostatic" regulation of a subset of conductances expressed in a cell.Swartz FoundationThis is the final version of the article. It first appeared from National Academy of Sciences via http://dx.doi.org/10.1073/pnas.1309966110

    OAR BLADE FORCE COEFFICIENTS AND A MATHEMATICAL MODEL OF ROWING

    Get PDF
    The aim of this study was to validate the use of computational fluid dynamics (CFD) to determine oar blade force coefficients for use in a mathematical model of rowing mechanics to predict the performance of a boat. Experimental and CFD derived lift and drag force coefficients for a Macon oar blade were taken from previously published research. Each set of coefficients was used to drive a mathematical model of rowing, and predicted instantaneous and mean steady state boat velocity compared. Instantaneous boat velocity was similar throughout the stroke and mean boat velocity varied by only 1.33%. In conclusion, this investigation has demonstrated that lift and drag coefficients obtained by computational methods may be used successfully to predict boat behaviour in a mathematical model of rowing. The use of computational data closely matches model outputs derived from experimental data

    Cache CountyCommunity Survey of Future Landfill Alternatives

    Get PDF
    State University in the spring of 2003. The purpose of this survey was to gather scientific information regarding the concerns, perceptions, and preferences of Cache County adults related to various future landfill siting options. The survey was conducted at the request of local officials, the Countywide Service District, and various advisory committees established to make recommendations on a future Cache County landfill site

    Iron oxidation at low temperature (260–500 C) in air and the effect of water vapor

    Get PDF
    The oxidation of iron has been studied at low temperatures (between 260 and 500 C) in dry air or air with 2 vol% H2O, in the framework of research on dry corrosion of nuclear waste containers during long-term interim storage. Pure iron is regarded as a model material for low-alloyed steel. Oxidation tests were performed in a thermobalance (up to 250 h) or in a laboratory furnace (up to 1000 h). The oxide scales formed were characterized using SEM-EDX, TEM, XRD, SIMS and EBSD techniques. The parabolic rate constants deduced from microbalance experiments were found to be in good agreement with the few existing values of the literature. The presence of water vapor in air was found to strongly influence the transitory stages of the kinetics. The entire structure of the oxide scale was composed of an internal duplex magnetite scale made of columnar grains and an external hematite scale made of equiaxed grains. 18O tracer experiments performed at 400 C allowed to propose a growth mechanism of the scale

    Anomalous Noise in the Pseudogap Regime of YBa2_2Cu3_3O7δ_{7-\delta}

    Get PDF
    An unusual noise component is found near and below about 250 K in the normal state of underdoped YBCO and Ca-YBCO films. This noise regime, unlike the more typical noise above 250 K, has features expected for a symmetry-breaking collective electronic state. These include large individual fluctuators, a magnetic sensitivity, and aging effects. A possible interpretation in terms of fluctuating charge nematic order is presented.Comment: 4 pages, 4 figure

    A comparison between Pa alpha and H alpha emission: The relation between HII region mean reddening, local gas density and metallicity

    Full text link
    We measure reddenings to HII regions in NGC 2903, NGC 1512, M51, NGC 4449 and NGC 6946 from Hubble Space Telescope Pa alpha and H alpha images. Extinctions range from A_V ~ 5 - 0 depending upon the galaxy. For the galaxies with HST images in both lines, NGC 2903, NGC 1512 and M51, the Pa alpha and H alpha emission are almost identical in morphology which implies that little emission from bright HII regions is hidden from view by regions of comparatively high extinction. The scatter in the measured extinctions is only +- 0.5 mag. We compare the reddenings we measure in five galaxies using the Pa alpha to H alpha ratios to those measured previously from the Balmer decrement in the LMC and as a function of radius in M101 and M51. We find that luminosity weighted mean extinctions of these ensembles of HI regions are correlated with gas surface density and metallicity. The correlation is consistent with the mean extinction depending on dust density where the dust to gas mass ratio scales with the metallicity. This trend is expected if HII regions tend to be located near the mid-plane of a gas disk and emerge from their parent molecular clouds soon after birth. In environments with gas densities below a few hundred Msol/pc^2 star formation rates estimated from integrated line fluxes and mean extinctions are likely to be fairly accurate.Comment: accepted for publication in A

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    Defining human mesenchymal stem cell efficacy in vivo

    Get PDF
    Allogeneic human mesenchymal stem cells (hMSCs) can suppress graft versus host disease (GvHD) and have profound anti-inflammatory and regenerative capacity in stroke, infarct, spinal cord injury, meniscus regeneration, tendinitis, acute renal failure, and heart disease in human and animal models of disease. There is significant clinical hMSC variability in efficacy and the ultimate response in vivo. The challenge in hMSC based therapy is defining the efficacy of hMSC in vivo. Models which may provide insight into hMSC bioactivity in vivo would provide a means to distinguish hMSCs for clinical utility. hMSC function has been described as both regenerative and trophic through the production of bioactive factors. The regenerative component involves the multi-potentiality of hMSC progenitor differentiation. The secreted factors generated by the hMSCs are milieu and injury specific providing unique niches for responses in vivo. These bioactive factors are anti-scarring, angiogenic, anti-apoptotic as well as regenerative. Further, from an immunological standpoint, hMSC's can avoid host immune response, providing xenographic applications. To study the in vivo immuno-regulatory effectiveness of hMSCs, we used the ovalbumin challenge model of acute asthma. This is a quick 3 week in vivo pulmonary inflammation model with readily accessible ways of measuring effectiveness of hMSCs. Our data show that there is a direct correlation between the traditional ceramic cube score to hMSCs attenuation of cellular recruitment due to ovalbumin challenge. The results from these studies verify the in vivo immuno-modulator effectiveness of hMSCs and support the potential use of the ovalbumin model as an in vivo model of hMSC potency and efficacy. Our data also support future directions toward exploring hMSCs as an alternative therapeutic for the treatment of airway inflammation associated with asthma
    corecore