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Abstract 

Experimental observations reveal that the expression levels of different ion channels 

vary dramatically across neurons of a defined type, even when these neurons exhibit 

stereotyped electrical properties. However, there are robust correlations between 

different ion channel expression levels, although the mechanisms that determine these 

correlations are unknown. Using generic model neurons we show that correlated 

conductance expression can emerge from simple homeostatic control mechanisms that 

couple expression rates of individual conductances to cellular readouts of activity. The 

correlations depend on the relative rates of expression of different conductances. 

Furthermore, we show that homeostatic regulation is remarkably insensitive to the 

details that couple the regulation of a given conductance to overall neuronal activity 

because of degeneracy in the function of multiple conductances and can be robust to 

‘anti-homeostatic’ regulation of a subset of conductances expressed in a cell. 

Significance statement 

Neurons develop and maintain their electrical properties according to homeostatic rules 

that ensure robustness to perturbations and channel turnover. It is not currently 

understood how such homeostatic regulation rules shape the long term expression of 

ion channel types in specific neuron classes nor how finely-tuned these rules need to be. 

We show that generic activity-dependent regulation rules constrain the distribution of 

different membrane conductances to reveal correlations in their relative densities, as 

has been recently observed experimentally. Specific correlations in ion channel 

expression to depend on expression rates, and the regulation rules themselves are far 

more robust than previously thought.   
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Introduction 

The electrophysiological signature of each neuron is determined by the number 

and kind of voltage-dependent conductances in its membrane.  Most neurons express 

many voltage-dependent conductances, some of which may have overlapping, or 

degenerate physiological functions (1-5).  Furthermore, neurons in the brains of long-

lived animals must maintain reliable function over the animal’s lifetime while all of their 

ion channels and receptors are replaced in the membrane over hours, days or weeks.  

Consequently, ongoing turnover of ion channels of various types must occur without 

compromising the essential excitability properties of the neuron (5-9). 

Both theoretical and experimental studies suggest that maintaining stable 

intrinsic excitability is accomplished via homeostatic, negative feedback processes that 

use intracellular Ca2+ concentrations as a sensor of activity, and then alter the synthesis, 

insertion, degradation of membrane conductances to achieve a target activity level (10-

26).   Among the modeling studies are several different homeostatic tuning rules that 

differ in how sensor read-out is coupled to the changes in conductance necessary to 

achieve a target activity (10, 12, 13, 27).  Regardless, these models can self-assemble 

from randomized initial conditions, and they will change their conductance densities in 

response to perturbation or synaptic drive.  In one of these homeostatic self-tuning 

models (13), similar activity patterns can be associated with different sets of 

conductance densities.  

Thus, it is perhaps not surprising that experimental studies also find a 

considerable range in the conductance densities of voltage-dependent channels and in 

the mRNA expression of their ion channel genes (28-35).   The experimental studies also 

showed clear correlations in these expression patterns (29, 31-34).  It is therefore 

possible that these correlations are crucial for the electrophysiological behavior of the 

neuron in question.  However, when large numbers of model neurons (without a 

homeostatic tuning rule) were made from random sets of conductance parameters and 

then searched for those that produce a specific behavior, they did not show correlations 

in conductance expression that resemble the experimental findings (36). This raised the 

question of how the correlations seen in the experimental data are established and 
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whether they are somehow genetically hard-wired.  For example, correlations in ion 

channel expression may simply result from explicit co-regulation, such as control of 

gene expression by a common transcription factor or silencing of a subset of genes in a 

certain population of cells. Another possibility is that correlations emerge from some 

interaction between activity-dependent regulatory processes that control the expression 

of different ion channel types. 

We address this question in this paper using theory and computational models.  

We show that correlations in ion channel expression emerge as a consequence of 

homeostatic control mechanisms that couple the expression rates of individual 

conductances to a cell-intrinsic readout of activity.  Importantly, the shape of the 

correlation pattern is determined by the relative rates of expression of different 

conductances.  Furthermore, we show how degeneracy implies that regulatory control 

mechanisms do not need to be as precisely tuned as previously anticipated. For 

example, subsets of conductances can be regulated anti-homeostatically without 

interfering with convergence to a target activity level. Thus, there is considerable 

flexibility in how different conductances can be regulated while maintaining a ‘set-point’ 

in activity. This flexibility is compatible with distinct correlation patterns seen in the 

conductance expression of different neuron types. 
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Results 

There are several existing homeostatic neuron models that use intracellular Ca2+ 

concentrations to regulate their conductances (10, 12, 13, 17, 27, 37). These models are 

capable of producing and maintaining complex activity patterns such as rhythmic 

bursting that rely on the interactions between many voltage-dependent conductances 

and Ca2+  dynamics. Analysis of these models is often mathematically intractable and it 

is also difficult to develop an intuitive understanding of how the distribution of 

conductances is shaped over time.  Therefore, in this study we start with a toy model 

with three non-voltage-dependent conductances and simple Ca2+ dynamics. We then 

progress to a more complicated spiking model with three regulated voltage-dependent 

conductances, and finish with an analysis of an existing model that has seven voltage-

dependent conductances and three distinct [Ca2+] sensors.  In all three cases, we 

examine how the correlations in the steady-state conductance distributions are shaped 

by the parameters that govern regulation. We find that the intuition developed in the 

simplest model carries over to more complex cases. 

Correlations arise in simple model of homeostatic regulation 

The toy (leak) model consists of multiple ohmic conductances with different reversal 

potentials expressed in a single compartment (schematized in Figure 1a). To provide a 

biophysical correlate of activity we added first-order Ca2+ dynamics with a biologically-

realistic decay time-constant (100 ms) and an exponential steady-state dependence on 

membrane potential, Vm. The Ca2+ signal therefore gives a readout of Vm which 

approximates the way that Ca2+ concentration responds to membrane potential 

fluctuations in biological neurons. 

 Finally, we added a mechanism that slowly varies each membrane conductance 

according to activity. To ensure a stable activity level, we postulate a ‘target value’ for 

[Ca2+] such that each conductance is up or down-regulated according to the current 

[Ca2+] level (Methods). For example, the inward conductance gin down-regulates when 

[Ca2+] is above its target value and up-regulates below it (Figure 1a). 
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 The expression level of each conductance in this model is therefore 

independently coupled to activity with its own slow dynamics (Figure 1b). It is 

important that we assume regulation is slow because this corresponds to what is 

observed experimentally, where homeostatic or compensatory changes in neuronal 

membrane conductances in many preparations occur over many hours or days (38-40). 

It also turns out that because regulatory dynamics are much slower than fluctuations in 

activity, the toy model approximates the way in which complex, voltage dependent 

conductances shape average activity over similarly slow timescales (41) (see Appendix). 

 Figure 1c shows the behavior of this model. The model has an outward 

conductance g1 (reversal potential, Erev = -90 mV) and two inward conductances, g2 (Erev 

= -30 mV) and g3 (Erev = +50 mV).   In all of the traces in Figure 1c, the blue traces show 

the evolution of a canonical version of the model in which the inward conductances are 

downregulated when [Ca2+] is above target, and upregulated when [Ca2+] is below 

target. The outward conductance is regulated in the opposite direction.  Each of these 

conductances has a different time-constant of regulation (Methods). 

 The light blue traces in Figure 1c show multiple runs initialized with random 

values for each conductance. The bold traces show the trajectory of the model starting at 

the average value of this random initial distribution. Note that in this model, the final 

conductance values are different for each distinct run. We asked how the values of the 

regulation time-constants influence the evolution of the model by varying each 

independently. The green traces in Figure 1c show a version of the model in which the 

time-constants for g1, g2 and g3 are scaled (  ,    ,     respectively), resulting in 

steeper rates of change in this case. In both of these versions of the model, [Ca2+] 

equilibrates at its target value. Interestingly, when we changed the sign of g2 (thus 

making its direction of regulation ‘anti-homeostatic’) the model also converges to target 

[Ca2+] value (red traces). In fact, homeostatic models with multiple conductances can 

tolerate such anti-homeostatic regulation in a subset of conductances provided broad 

constraints on the regulation rates (  ) are respected (see below). 

How do the regulation rates influence the resulting steady-state distribution of 

conductances? Figure 1d shows three views of a 3D plot showing the conductances as 
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they are distributed initially (orange points) and at steady-state. Note that each version 

of the model (with different sets of regulation rates) converges to a distinct region of 

conductance space, but these regions sit on a common plane (pink rectangle). This plane 

is simply the solution set of all conductances that produce target activity in the model. 

Thus, the regulation rates (as well as the initial values of the conductances) determine 

the direction in which the model evolves in conductance space, while the point of 

intersection of each trajectory with the solution plane dictates the steady-state 

conductance values. 

 The correlation between each pair of conductances is obtained by projecting the 

steady-state clouds of points in Figure 1d onto the respective axes. Figure 1e shows 

distinct pairwise correlations between all three conductances.  Changing the regulation 

rates changes the correlations (panel 2, green) as does making one of the regulation 

directions antihomeostatic (third panel, red).   Thus, correlations emerge from 

homeostatic rule, and the specifics of the correlations depend on the specifics of the 

rates governing the insertion and removal of the channels in the membrane. 

Mathematically, the pairwise correlations are determined by the geometric 

relation between the plane and the location of the steady-state points. We calculated the 

slopes of the correlation between each conductance (black lines in Figure 1e) as follows 

(full details are in the Appendix). The trajectories of the models’ evolution are shown in 

the 3D plots of Figure 1d. The light blue arrow in the large plot shows the direction of 

the mean trajectory as it hits the plane, while the pink arrow shows the surface normal 

of the plane. To calculate the correlation vector at this point we simply resolve the light 

blue arrow onto the plane as shown (dark blue arrow). The ratios of the components of 

this correlation vector provide the pairwise correlations in the conductances. 

The relationship between the solution plane, the initial conductance values and the 

direction of the model’s trajectory through conductance space (determined by the 

regulation rates and the form of the regulatory rule) dictates whether or not the model 

converges to stable target behavior. Intuitively, as long as the net movement of the 

trajectory is toward the plane the regulation rule will converge. Many combinations of 

regulation rates achieve this (see Appendix). For example, if expression rates and signs 
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(i.e. directions) are chosen at random in this toy model, over half (62%) of the resulting 

models produce stable target activity with conductance values inside reasonable bounds 

(        ). 

Thus the stability of homeostatic regulation is relatively insensitive to the regulation 

rates. Moreover, because the rates determine correlations, there is a large amount of 

freedom to determine the direction and magnitude of correlations between 

conductances. This is a robust mechanism by which distinct cell types can maintain 

distinct correlations in their conductances. 

Correlations emerge in a homeostatically-regulated spiking model 

A simple leak model is intuitive to understand and straightforward to work with 

mathematically, but the most widely-relevant and interesting examples of homeostatic 

regulation involve voltage-dependent conductances. The dynamics of regulation in these 

more complex cases are difficult to study because there is a far more complicated 

relationship between the distribution of conductances and the resulting activity pattern. 

It was therefore not immediately clear that the results we obtained for the leak model 

would carry over to more realistic conductance-based models of spiking neurons. To 

address this, we constructed a single-compartment, conductance-based model of a 

spiking neuron with seven voltage-gated conductances, a fixed leak conductance and 

realistic calcium dynamics. Three of the seven voltage-gated conductances (A-type 

potassium, gKA, delayed rectifier, gKd, and hyperpolarization-activated mixed cation 

conductance gH) in this model are controlled by the same homeostatic regulation rule as 

in the toy model with a single intracellular [Ca2+] target. The remaining conductances 

are fixed at values that generate tonically-spiking behavior over a range of randomly-

chosen initial values for the three regulated conductances (Methods). 

Figure 2a shows the evolution of [Ca2+] in this model for three different sets of 

regulation rates. As with the toy model, we fixed a default set of rates (blue traces) and 

from these defined a ‘scaled’ set (        ,      , green traces) and a ‘flipped’ set 

(     , red traces). All three sets of rates produce models whose average [Ca2+] 

converges to the homeostatic target. Figure 2b shows membrane potential activity at 
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different timepoints in the evolution of each version of the model. The random initial 

conductance distribution produces spiking neurons with high firing rates (~30 Hz) and, 

as a result, [Ca2+] is above target. Over time, all three versions of the model converge to 

a set of conductances that have a lower firing frequency and qualitatively different spike 

shapes (Figure 2c). 

The steady-state conductance distributions for this model are shown in the 3D 

plots in Figure 2d. In this region of conductance space, the sets of solutions that give 

target [Ca2+] are seen to sit on a surface that is close to being planar. Again, these 

solutions give rise to pairwise correlations between the three regulated conductances, as 

can be seen in the correlation plots at the bottom of Figure 2d. Thus in spite of the 

complex, non-linear relationship between the dynamics of the voltage-dependent 

conductances in this model and membrane potential activity, the steady-state 

conductances distribution behaves in a similar way to the toy model. This will not be 

true in for all regions of parameter space because it is known that the solution spaces for 

a particular type of activity can be complex and exhibit abruptly dependences on the 

maximal conductances. However, locally, these solution spaces can often be well-

approximated by a flat space owing to the smooth dependence of quantities such as 

‘average calcium concentration’ on maximal conductances (see Appendix). The toy 

model is therefore a useful tool for understanding general properties of homeostatic 

regulation. 

Correlation structure in a seven-conductance homeostatic model 

The toy model of homeostatic regulation explains, in part, how correlations can 

arise in the conductance distributions of real neurons, as has been observed recently 

(29, 42) and makes a strong prediction about the behavior of more complex and realistic 

regulatory models. Specifically, the simplified model predicts that regulatory control 

mechanisms that independently tune multiple conductance densities according to a 

target activity level impose a correlation structure on the steady-state conductance 

distribution. Furthermore, it predicts that a subset of membrane conductances can be 

regulated anti-homeostatically and this can nonetheless produce target behavior, but 

with a different final conductance distribution for a given range of initial conditions. To 
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investigate this prediction in a more realistic situation with multiple nonlinear 

conductances and multiple activity sensors, we examined how regulation shapes steady-

state conductance distributions in an existing, complex model of a self-regulating 

rhythmically-bursting cell developed in Liu et al. (13) 

The Liu et al. model has seven voltage-dependent conductances plus a leak 

conductance (see Methods), a Ca2+ buffering mechanism and three activity sensors that 

depend on calcium influx through the two voltage-gated Ca2+conductances. These 

sensors act as filters that decompose the Ca2+ signal into three bands: a fast band 

corresponding to Ca2+ transients caused by spikes, a slow band corresponding to Ca2+ 

waves that generate rhythmic bursting and a steady-state band that measures average 

Ca2+ influx. The regulatory control mechanism imposes a target on each sensor that was 

empirically chosen (13) to generate bursting models with dynamics similar to crustacean 

pacemaker neurons. This model thus has a high-dimensional conductance space and 

multiple constraints imposed by its regulatory mechanism. 

We generated a population of 9370 Liu et al. model neurons by initializing each cell with 

uniform, randomly-distributed maximal conductances and allowing the conductance 

distribution to reach steady state. An example run is shown in Figure 3a, where it is 

important to note the short timescale of convergence. This timescale, determined by a 

short conductance regulation time-constant of 5 seconds, does not mirror the biology, 

but was necessary to make repeated simulations of this model practical and does not 

qualitatively change the steady-state solution (13).  8087 models (86%) from this initial 

population converged to a steady-state with sensor values equal to their targets 

(Methods). The resulting conductance distribution for these models is shown in Figure 

3b, where the values of the maximal conductances have been restricted to 

physiologically reasonable bounds. The relationship between the maximal conductances 

in this solution space is clearly more complex than can be described by straightforward 

linear correlations as in the simpler models of Figures 1 and 2. This is to be expected 

given the highly non-linear relationship between the effects of each of the model’s 

conductances on the three activity sensors. Nonetheless, a clear pattern is evident in the 

pairwise plots of maximal conductances (Figure 3b). 
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The intuition developed in the toy model of Figure 1 tells us that the set of solutions 

found by a homeostatic mechanism is a subset of all available solutions. To approximate 

the set of all solutions over a range of conductances in the complex model, we analyzed 

the membrane potential behavior of 2×106 non-regulating model neurons randomly 

parameterized from a uniform distribution spanning the physiologically realistic range 

of maximal conductances in the converged, regulated models. Of these random models, 

we selected 8638 that had membrane potential activity within 10% of the target sensor 

values. This tolerance corresponds to approximately one standard deviation of the 

steady-state sensor values in the converged Liu et al. models and was found to be 

sufficient to determine bursting behavior (Methods). In both regulated and randomly 

selected models, a wide variety of bursting behaviors is evident as can be seen in the 

traces in Figure 3d. Furthermore, representatives of the different characteristic 

behaviors (as delineated by membrane potential waveform, bursting frequency and 

number of spikes per burst) can be found in both cases. 

The correlation structure in membrane conductances of the randomly-selected bursting 

models is markedly different from the structure observed in models that implement 

regulatory control to achieve their target activity (Figure 3b-d). This demonstrates that 

the regulatory control mechanism does indeed impose a characteristic correlation 

structure on the distribution of conductances as predicted by the analysis of the toy 

model. In general, the randomly selected solutions exhibit less structure in this 

distribution, as exemplified in the scatter plots of gNa vs gKd in Figure 3d. However, 

certain conductance pairs show a compensatory relationship that is preserved in the Liu 

models, for example gCaS vs gKA in Figure 3b-c. 

Finally, we addressed the question of how the model behaves when conductances are 

regulated in the 'wrong' direction. The left-hand table in Figure 4a shows the regulation 

coefficients used in the original model alongside a set of coefficients that was formed 

changing the signs of the regulatory coefficients of the A-type potassium conductance, 

gKA. In the original model gKA is up-regulated when either the slow or the steady-state 

Ca2+ sensor is above target and down-regulated when these sensors are below their 

target level. The sign change in the alternate model causes gKA to be regulated in the 

opposite way, which is intuitively ‘anti-homeostatic’.  
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As predicted by the analysis of the simplified model, changing regulation signs in this 

way causes convergence to a different distribution of final membrane conductances. 

This can be seen by comparing the correlation maps and histograms in Figure 4b. For 

example, the distribution of gKA and gCaS is shifted toward lower values, which has a 

clear effect on the pairwise relation between these two conductances (scatter plots in 

Figure 4c). On the other hand, the distribution and correlation pattern of gKD and gNa is 

left relatively unchanged. In spite of this shift in the overall distribution of 

conductances, target sensor values are achieved and this results in functional bursting 

behavior as shown in Figure 4c. To make a valid comparison with the behavior of the 

original model, we used the same random initial conditions. This resulted in fewer 

models (77%) converging to steady state according to our criteria than in the original 

model. Perhaps surprisingly, examples that are representative of the diverse range of 

bursting behaviors in the original model can nevertheless be easily found in the 

alternate model, as is evident in the example traces in Figure 4c. Thus two different sets 

of regulation rules find a subset of the available bursting solutions in conductance space, 

and this distribution is concentrated in a different region for each set of rules. The fact 

that the alternate model converges to the same functional behavior shows that there is 

sufficient degeneracy in the dynamical properties of the eight conductances to reach 

target activity despite the altered regulation rule. 
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Discussion 

Almost twenty years ago, a handful of theoretical studies (10, 12, 27) suggested that 

stable neuronal function requires some kind of homeostatic regulation of ion channel 

expression.   This triggered a host of experimental studies that are consistent with the 

idea that nervous systems must balance the mechanisms that allow them to be plastic 

with others that maintain their stability (5, 39, 40, 43). Subsequently, both theoretical 

and experimental studies showed that there are multiple solutions consistent with very 

similar activity patterns (30, 36, 44-47).  It is important to recognize that homeostatic 

tuning rules, such as those studied here, do not invariably produce the same set of 

channel densities, but instead result in a target activity that is consistent with a range of 

solutions.  It is also important to remember that although homeostatic tuning rules can 

compensate for many perturbations and for some genetic deletions, they cannot 

compensate for all deletions of specific currents.  Indeed, when there are multiple 

currents with degenerate, or overlapping functions, compensation occurs easily, but if 

there is a single current responsible for an important process, homeostatic tuning rules 

will never achieve perfect compensation upon deletion of this current. 

One of the new contributions of the present work is that we have shown that the 

range of solutions consistent with a particular homeostatic rule has a specific structure 

that results in correlations in ion channel expression. Thus, the experimental 

measurements of correlations (28, 29, 32, 34) may provide direct insight into the 

underlying regulatory rates in biological neurons.  Moreover, we now demonstrate that 

the homeostatic processes themselves can be far sloppier than might have been 

previously expected.  This is comforting, as it reassures us that these kinds of processes 

can be instantiated in biological systems that have variable and noisy components.   

 Before relating our modeling results to biology it is important to note the 

assumptions our work is based on and its potential limitations. The clearest simplifying 

assumption we have made is the form of the regulatory rule, which simply modulates 

the rate of expression of different membrane conductances to a Ca2+ ‘error signal’. 

Biological neurons employ complex cascades of signal transduction and trafficking 

mechanisms to control ion channel expression and these mechanisms remain the focus 
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of intense research (22, 38, 48-50). Our results rely on these underlying pathways 

approximating a simple feedback rule that depends on intracellular Ca2+concentration. 

An important task for future work is to relate simplified schemes such as the regulatory 

rule we employ here to the details of the biological signaling mechanisms as they 

become available. Nonetheless, existing experimental work that measures the dynamics 

of homeostatic plasticity and its dependence on mean intracellular Ca2+ concentration 

are consistent with the qualitative behavior of simple models (14, 19, 22). 

Homeostasis and degeneracy 

Most neurons express upwards of tens of different types of ion channels, and many of 

these channels overlap in their biophysical properties. For example, several genetically-

distinct distinct potassium channels can coexist in a single mammalian neocortical 

neuron (33) and to some extent these channels perform similar electrophysiological 

functions. This kind of functional overlap is an example of degeneracy (51, 52) and its 

existence in membrane conductance properties of ion channels has important 

implications for homeostatic regulation mechanisms. This observation was first made 

theoretically by examining the degeneracy present in the map between conductance 

space and electrophysiological phenotypes, where it is clear that multiple conductance 

distributions can give rise to electrical properties that are, in biological terms, virtually 

identical (45, 46, 53). Degeneracy of this kind has been observed experimentally (30) 

and prompts the question of how neurons regulate multiple conductances to achieve a 

characteristic electrical behavior. A clue was found in the observation that neurons of a 

defined type show strong correlations between both mRNA expression and functional 

expression of different ion channels (28, 29, 42). This led to the idea that correlations 

provide an important determinant of cell identity by ensuring fixed ratios in the 

expression of different ion channel types (54). However, it is not known how such 

correlations are achieved or maintained. Our findings add to this picture by showing 

that feedback regulation of conductances toward activity set-points constrains the 

steady-state distribution and that this can produce distinct correlation patterns. 

Not only could this effect contribute to observed correlations in experimental 

measurements of  membrane conductances (28, 29, 31-34), but it may also explain why 
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previous studies that found successful  models based on phenomenological properties of 

neuronal activity failed to replicate biological correlation structures (36, 47, 54). These 

previous studies randomly sampled the set of membrane conductances in complex, 

rhythmically bursting neuron models and selected combinations of conductances that 

reproduced biologically realistic behavior. However, the correlation pattern found by 

randomly sampling in this way did not resemble correlation patterns in found in 

experiments – a result that parallels the situation in Figure 3, where randomly-selected 

models and homeostatically-regulated models exhibit very different conductance 

distributions. To replicate experimentally-observed correlations in models it may 

therefore be necessary to obtain a quantitative description of how conductances are 

regulated with respect to activity as well as the ways that different conductances shape 

activity. Nonetheless, activity-dependent regulation cannot be thought of as a catch-all 

for explaining ion channel expression. In biological neurons we expect many constraints 

to exist besides broad activity targets and these will further shape the solution space. For 

example, the coordinated expression of ion channels may be coupled to activity-

independent processes, such as epigenetic modification of ion channel genes during cell 

differentiation. Relative expression may also be 'hard-wired' in a way that only makes 

sense from an evolutionary perspective, including conserved transcriptional control of 

multiple ion channel genes by a shared transcription factor or regulatory element. Our 

results are compatible with these kinds of constraints and the extent to which ion 

channel expression is determined by activity-independent regulation remains an open 

question. 
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How conductance correlations are related to expression rates 

In all of the models we saw that the shape of the steady-state distribution of 

conductances depends on the rate at which each conductance is regulated with respect 

to other conductances. One way to think of this is to imagine a neuron that 

homeostatically regulates two-pore domain (leak) potassium channels more quickly 

than persistent sodium channels. In situations where activity is too low, the potassium 

channels will be rapidly removed from the membrane and the sodium channels will 

slowly start to accumulate. By the time the activity target is reached, the potassium 

channels will have undergone a larger change in their expression than the sodium 

channels. Throughout a population of these hypothetical cells with varying activity 

histories, one would observe a large range in potassium channel density and a smaller 

range in sodium channel density, with the two channel types showing correlated 

expression according to the combinations that achieve the homeostatic target. 

In biological neurons it is therefore plausible that differing rates of expression between 

ion channel subtypes provide a mechanism for determining cell-type signatures in 

correlated ion channel expression. Viewed in this way, the regulatory mechanisms are a 

more fundamental determinant of cellular identity than the expression levels of ion 

channels and mRNAs at a single point in time. This is consistent with the principle that 

specific transcription factors are often used as cell-type markers, and with the 

observation that reliable cell-type classification requires the expression of many ion 

channel genes to be measured combinatorially (33, 55). 

Robust regulation from degenerate ion channel function 

An important consequence of degeneracy in membrane conductances is that the 

regulation of all individual conductances in a given neuron  need not occur in the 

‘correct’ direction in the homeostatic sense, provided a sufficient subset of remaining 

conductances is appropriately regulated. Recent work (56) that quantified expression of 

the transcriptome of murine cortical neurons revealed both up- and down-regulation of 

inward as well as outward conductances in response to sustained membrane potential 

depolarization. However, the same manipulation in similar preparations has also been 

shown to result in a net downregulation of intrinsic excitability (14, 50). Our work here 
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helps resolve these empirical observations and cautions against focusing on individual 

genes and proteins when trying to understand compensatory responses. 

In general, this indicates that homeostatic mechanisms in neurons leave more ‘room for 

maneuver’ in the way individual conductances are regulated than previously 

appreciated. Indeed, recent experiments indicate that in addition to homeostatic 

regulation of maximal conductance, the half-activation of voltage-gated conductances 

can be subject to regulation and that this permits tuning of rebound spiking in 

dopaminergic cells of the substantia nigra (57). 

The advent of high-throughput, multiplexed monitoring of gene expression, protein 

expression and neuronal activity offers the potential to quantify the level of degeneracy 

in nervous systems. In principle this will allow us to explore questions that, at present, 

can only be fully addressed in a theoretical setting, such as how the full complement of 

ion channels in a population of neurons might be regulated during development and in 

response to perturbations. Our study highlights the role of degeneracy in homeostatic 

systems, illustrating the extent to which degeneracy explains variability and enables 

systems to cope with aberrant regulation of a subset of components. A full 

understanding of homeostasis in degenerate systems is a therefore a prerequisite to 

understanding phenotypic variability in nervous systems, and why – in the case of many 

diseases – the nervous system may not be able to compensate for loss of function.  
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Methods 

All models were single-compartment conductance-based neurons which followed the standard 

Hodgkin-Huxley formalism. The membrane potential,  , of a cell containing   conductances 

and total membrane capacitance,  , thus evolves according to: 

 
  

  
 ∑ ̅   

    
  (    )

 

   

          ( ) 

 ̅  is maximal conductance (bar omitted in for leak conductances),    and    are integers 

representing the number of independent ‘gates’ in each conductance, and    is the reversal 

potential. The variables   and   respectively represent the activation and inactivation of each 

current;   is omitted in non-inactivating currents, while both   and   are omitted in leak 

currents. All models have unit capacitance (1 nF); maximal conductance values in the 

manuscript are therefore equivalent to conductances densities in units of μS/nF. 

In Figure 1, we analyze conductance regulation in a model cell containing three leak 

conductances (g1, g2, g3) with reversal potentials of E1 = 90, E2 = -30, and E3 = +50. The calcium 

dynamics of this model were implemented as follows: 

  

  

  
   (  )      where      (  )    exp(   )      ( ) 

Calcium concentration, c, is thus modeled with linear first-order dynamics with time-constant 

    100 ms. The steady-state calcium concentration was based on a least-squares fit of the 

steady-state calcium in the Liu et al. model(13) (see below) over the membrane potential range -

80 to -20 mV, giving A = 109.2 µM, b = 0.08 mV-1. 

Unless specified the maximal conductances in all models  ̅   are dynamically adjusted by a 

calcium-dependent regulation rule. Specifically, the conductances change over time according to 

the equation(13): 

  

  ̅ 

  
   ̅   ,       ( ) 

In this equation,   is the “error function” which is dependent on the calcium current. We 

observe the convention by which     when the calcium current is below its target activity 

profile, and     when the calcium current is above target. The time constants,   , in equation 3 
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scale the rate of conductance regulation and determine the direction of regulation (for example, 

if     , then  ̅  increases when     and decreases when    ). 

In Figure 1, we set    ( )      , where        , is the target intracellular calcium 

concentration. The values for    (in seconds) used in the original model in Figure 1 are:    

      ,          , and          . The traces in Figure 1 were obtained by 

numerically integrating (3) for     s (~27.8 hours simulated time). Initial values for the three 

conductances were randomly chosen from Gaussian distributions (truncated below zero) with 

means ± standard deviations (in μS/nF) as follows:         (  ),        (  ) and    

    (  ). The details of the analysis of this model are in the Appendix. 

In Figures 2-4, we examine a model neuron with a passive leak current (gL) and seven voltage-

dependent currents: fast sodium (gNa), delayed rectifier (gKd), fast transient calcium (gCaT), slow 

calcium (gCaS), calcium-dependent potassium (gKCa), fast transient potassium (gA), and a 

hyperpolarization-activated inward cation current (gH). The leak reversal potential was  50 mV, 

potassium,  80 mV and sodium +50 mV.  Calcium reversal potential was dynamically 

calculated from the Nernst equation assuming an extracellular concentration of 3 mM. The 

equations describing the voltage-dependence and the kinetics of these currents and Ca2+ 

dynamics are given in the Appendix of Liu et al.(13) 

The spiking model of Figure 2 used the same regulation rule as the toy model but with the time-

constants of regulation for gA, gKd and gH set (in ms) to         ,        and        

respectively. The remaining maximal conductances were fixed at the following values (in 

μS/nF): gNa = 100, gCaS = 0.5, gCaT = 0.5, gKCa = 10, gL = 0.01. Initial values for the three 

regulated conductances (in μS/nF) were uniformly randomly chosen in the ranges      (   ), 

        (  ) and            (  ). 

In Figures 3 and 4, we examine the conductance regulation model as originally described in Liu 

et al. In this model, the error function is not a direct function of intracellular calcium 

concentration, but rather depends on three calcium sensors which filter the calcium signal into 

distinct frequency bands. The activation of each sensor is represented by three variables F, S, 

and D (the letters represent the time scale of each sensor; “fast”, “slow”, and “DC”), which are 

calculated at each time point according to the equations: 

      
     ,            

                  
   .       ( ) 
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The form of the above equations is similar to a typical Hodgkin-Huxley channel model: the   

and   variables are analogous to the activation and inactivation gating variables, and the   

parameters are analogous to the maximal conductance. Following the parameters reported in 

Liu et al., we set      ,     , and     . Each   and   variable were numerically 

integrated according to: 

   

   

  
 

 

          
     

          ( ) 

   

   

  
 

 

           
     

           ( ) 

Here,   substitutes for each sensor in the model (        ), the    and    parameters 

respectively control the half-activation and half-inactivation of point of the steady-state curves 

for   and  , and the    and    parameters scale the rate at which the   and   variables change 

over time. The values for the   ,   ,   , and    parameters are given in Table 2 in Liu et al. The 

conductances are regulated according to: 

  

  ̅ 

  
    ̅     ( ̅   )    ( ̅   )    ( ̅   )  ̅         ( ) 

Where   ,   , and    are constant coefficients equal to -1, 0, or 1, and are distinct for each 

regulated maximal conductance (see Figure  A for their values in the original and “alternate” 

model). The parameters  ̅,  ̅, and  ̅ represent the target activation level for each sensor; as in 

Liu et al., they were all set equal to 0.1 as this was empirically found to produce bursting 

cells(13) . Each conductance is regulated with time constant      seconds that was not found 

to interact with the faster dynamics of the system (membrane potential and     )(13). Thus, 

the coefficients   ,   , and    collectively the direction of conductance regulation, while    scales 

the rate of regulation. 

The initial conductances for Figures 3 and 4 were randomly drawn from a uniform distribution 

(the maximal conductances for gNa, gKd, gA, and gKCa were selected between  .5 and  7.5 μS/nF, 

while the maximal conductances for gCaT, gCaS, and gH were selected between 0.05 and 0.95 

μS/nF). The chosen initial ranges for Figures   and   were empirically found to produce a high 

proportion of models with final conductances that fit within a range that is both physiologically 

realistic and tractable to search randomly (Figure 4, 'random models'). 
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All homeostatically regulated models in Figures 3 and 4 were simulated for an hour of simulated 

time. Though many simulations converged to a stable solution on a faster time scale (under 10 

minutes simulated time), certain initial conditions required much longer to reach a stable 

solution set. As observed by Liu et al., a small subset of initial conditions did not converge 

during the simulation. To exclude non-converging models, we discarded simulations in which 

any of the maximal conductances had coefficients of variation above 0.015 over the last 30 

simulated seconds; 14% of all models with the original Liu et al. regulation coefficients (Left 

Panels in Figure 3B and 4B) were excluded according to this criterion, while in the alternate 

model (Right Panel in Figure 4B) this proportion was 23%. For the purpose of performing a 

random search in conductance space, the scatter plots and histograms in Figure 3 are restricted 

to ranges that we considered to be physiologically realistic, in μS/nF these are zero through 146 

(gNa),  2.9 (gCaT), 5.4  (gCaS), 134 (gKA), 134 (gKCa), 69 (gKd) and 0.8 (gH). Those in Figure 4 are 

extended three-fold to show the full structure of the distributions. 
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Appendix: mathematical analysis of conductance regulation 

Here we analyze the regulatory system in the case of a single calcium sensor, i.e. when 

regulation is just a function of instantaneous calcium concentration. For the toy model 

we can derive explicit expressions for the conductance correlations and conditions for 

convergence/stability of the regulatory system. The more complex voltage-dependent 

case is similar locally. The details of how average calcium concentration depends on 

each of the conductances will determine how well local behavior approximates global 

behavior in specific cases. 

The equations for the toy model are: 

  

  

  
 ∑  (    )

 

 

   

       

  
 ( ( )        ) 

  

   

  
   (         ) 

Where    is (unit = 1 nF) membrane capacitance,   is membrane potential,    is 

conductance,    is the reversal potential corresponding to each conductance,     is 

calcium decay timeconstant,  ( ) is the membrane potential-dependent steady-state 

calcium concentration (Methods),    is the conductance regulation timeconstant and    

is the calcium concentration target. 

For slow regulation we can assume     
          (where    is the membrane time-

constant) and we replace   and        with their steady-state values. This results in an 

autonomous system of equations in the conductances alone: 

 ̇       ( )                      ( ) 

Where the dot indicates time derivative,   (      ) and we have written  ( )  

 ( ( ))     and      
   for convenience. Unfortunately, this system is nonlinear and 

cannot be solved explicitly (as a function of time) by standard methods. We can, 

however, describe the locus of the solution trajectory in the toy model. We can also 
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derive conditions for stability and determine the pairwise correlations at steady-state in 

more general cases. 

The solution space 

The solution space for the toy model is obtained by setting equation (1) to zero, which 

results in a (hyper) plane equation in  : 

  ∑  (      )

 

                          ( ) 

Where    (      ) and        (  ).  

A more general case with voltage-dependent conductances has a similar expression for the 

solution set, namely: 

  ∑  (〈 〉)(   〈 〉) 

 

 

Where 〈 〉 denotes the mean membrane potential at (quasi) steady-state. This equation no 

longer defines a hyperplane due to the dependence of    on 〈 〉. It is, however, locally 

approximated by a plane of the form (2) by setting the    to their value at a particular 

equilibrium solution. The general solution space is thus an (n-1) manifold (possibly containing 

singularities where the steady-state is unstable or when membrane potential activity abruptly 

changes with variation in a conductance). This relates the toy model to more complex models 

involving voltage-dependent conductances. 

Determining correlations and convergence 

Equation (1) defines the direction of the flow of the system at any point in conductance 

space. The pairwise correlations can be computed in general by resolving the flow vector 

onto the solution space near an equilibrium point. We write the system as: 

 ̇      

Linearizing about a point in conductance space (  ) and rewriting        gives 

 ̇     
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where   
   

   
. The direction of flow is therefore given by   . The correlation vector, 

     , is then computed at    as follows: 

          〈     ̂〉 ̂              ( ) 

where  ̂ is the unit normal vector to the solution plane,  ̂   ‖ ‖⁄  defined in (2). 

Pairwise correlations are then obtained from the ratios of the components of      . This 

shows explicitly how the correlations depend on the expression rates of each 

conductance for arbitrary regulation rules. 

For example, for the toy model,   becomes: 

  {    

  

   
          }

   

              ( ) 

where      is the Kronecker delta symbol. Substituting this into (3) and using the 

equation for   defined in (2) gives an explicit expression for the correlations in terms of 

the parameters of the model. This calculation was used to produce the correlation lines 

in Figure 1(e). 

Alternatively, single-sensor models permit the loci of the trajectories to be determined 

by taking the quotients the derivatives of each conductance defined in (1) when  Ca
  

  

  : 

 ̇ 

 ̇ 
 

    

    
           ∫

 ̇ 

  
   

  

  
∫

 ̇ 

  
   

This gives      
 

    ⁄
 for each i, j with r determined by the initial values of each 

conductance,     ( )  ( )     ⁄ . Solutions (where they exist) are therefore given by 

solutions to the following system of equations, which define the intersection points of 

the trajectory loci with the solution plane: 

  ∑  
 
(      )

 

     ( )  ( )     ⁄  
 

    ⁄
}     
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The existence of strictly positive solutions to this system on the branch of the locus in 

which the trajectory moves provides a criterion for the convergence of the homeostatic 

rule. 

Numerically, the system described in Figure 1 converges in 62% of cases (6151 out of 

10,000 simulations) where the regulation rates are randomly chosen on the ball defined 

by ‖ ‖       ,   (      ). 

The Linearization also allows us to provide explicit necessary conditions for stability at 

steady-state. Imposing steady-state conditions in (4),   becomes: 

  {    

  

   
}

   

     

where   denotes outer product,   (        ) and   (  
  

   
  ). 

The characteristic equation of this linearization is therefore: 

|         |  (     )     

This has     degenerate solutions     and a single solution,        ∑     
  

   
 . 

The zero eigenvalues prevent us from rigorously deriving sufficient conditions for stability using 

the linearization. We can, however, provide necessary conditions by considering the unstable 

case,     . Now, 

  

   
 

  

  
|
  

 
  

   
|
  

 
  

  
|
  

 
(      )

 
 

where   ∑    . Therefore the condition      implies 

    ∑    
(      )

 

    

So necessary conditions for stability are: 

∑
 

 

  
(      )
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This is intuitively clear since        are just the components of the normal to the solution 

space; i.e. for the system to be stable, trajectories must not move away from the solution plane 

when perturbed. 
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Figure Legends 

Figure 1. A toy model of activity-dependent conductance regulation. 

(a) Schematic of a neuron with regulated inward (gin) and outward (gout) conductances. 

Inward conductances promote Ca2+ influx through voltage-gate calcium channels (red) 

by depolarizing the membrane potential, while outward conductances inhibit Ca2+ 

influx. In turn, Ca2+ influx upregulates the outward current, and downregulates the 

inward current possibly via modulation of transcription rates or ion channel trafficking 

dynamics (grey circle). (b) A simplified model neuron with three Ohmic conductances 

g1, g2, and g3, each with a different reversal potential (-90 mV, -30 mV and +50 mV 

respectively). Calcium dynamics are first-order with exponential steady-state 

dependence on membrane potential,  (  ) (Methods) and each conductance is 

regulated with a specific regulation time constant,   , according to the difference 

between [Ca2+] and a target value,    (c) Behavior of three versions of the model with 

different sets of regulation rates. The traces show the evolution of the three 

conductances and internal [Ca2+] in 30 simulations of each version of the model. Blue 

traces = original rates (        ), green traces = scaled rates (               

  ), red traces = g2 rate flipped (      ). (d) Steady-state conductance distributions. 

3D plots showing all three conductances for 300 runs using each of the three sets of 

regulation rates (orange points = random initial values, blue = original rates, green = 

scaled rates, red = rate flipped). Each 3d plot is a different view of the same data and the 

colored curves are the sample trajectories plotted in (c). The large plot to the right shows 

the calculated solution space of conductance values that give target [Ca2+] (pink plane). 

The arrows represent the surface normal of the solution plane (pink), the velocity vector 

for the trajectory of the mean model trace with the original rate set (light blue) and the 

vector obtained by projecting this velocity vector onto the solution plane (dark blue). (e) 

Scatterplot matrices showing pairwise scatterplots (off-diagonals) between the three 

maximal conductances in each version of the model. Histograms (diagonals) show the 

distribution of each maximal conductance by itself. Black lines in each scatterplot are 

the correlations predicted by resolving the model trajectory onto the solution set 
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(Methods) as illustrated in the right-hand plot of (d). The schematic to the right of the 

plots show how the axes in the plots are organized. 

Figure 2. Behavior of the simple model is recapitulated in a model with 

active conductances.  

Behavior of a spiking model neuron with a three regulated voltage-dependent 

conductances controlled by the simple regulatory rule in Figure 1b. Three versions of the 

model are shown with the regulation rates at their original values (            , blue 

plots, see Methods), scaled (                     , green), and with the 

regulation rate for gH flipped (        , red). (a) Example traces of [Ca2+] in each of 

the three versions of the model. (b) Example membrane potential traces at different 

time-points (1, 2, 3) for each version of the model (timescale = 400 ms) (c) Example 

traces showing the evolution of the three regulated conductances in 30 simulations of 

each version of the model. (d) (Upper panels) 3D scatterplot showing the steady-state 

conductance distributions for 300 model simulations with each set of rates. The two 

plots show two rotated views of the same data. (Lower panels) Correlation plots of 

steady-state conductances for each version of the model. 

Figure 3. Structure of the steady-state conductance distribution in a 

complex homeostatic model neuron. Behavior of a complex bursting model 

neuron with a seven regulated voltage-dependent conductances and a regulation rule 

that uses three [Ca2+] sensors (a) Evolution of the maximal conductances over time for 

a single regulated neuron. Example voltage traces at three time points along the 

evolution trajectory are shown at right, showing that the model converges to the target 

bursting behavior (horizontal line = 0 mV). (b) Pairwise scattergrams (off-diagonals) 

and histograms (diagonals) of the final values for the 7 regulated maximal conductances 

after one hour of simulated time. Each scattergram is a 2D histogram with color 

representing count density (red = high, yellow = intermediate, green = low, blue = zero). 

The conductance ranges plotted are (in μS) zero through 146 (gNa),  2.9 (gCaT), 5.4  (gCaS), 

134 (gKA), 134 (gKCa), 69 (gKd) and 0.8 (gH). (c) Pairwise scattergrams and histograms for 

the same 7 conductances as in panel b, showing randomly sampled solution space of 

models that satisfy target sensor values within 10%. Ranges for each conductance axis 
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are the same as (b). (d)  Thinned (5000 points) pairwise scatterplot between gKd and gNa 

in converged homeostatic models (‘regulated’), and for random sampling (‘random’). 

These scatterplots correspond to the subplots outlined with pink boxes in panels b and 

c, respectively. Example voltage traces of labeled models are plotted to the right for 

several different points in the solution space (horizontal line = 0 mV). 

Figure 4. Anti-homeostatic regulation can coexist with homeostatic 

regulation in a complex model (a) Regulation coefficients in the original Liu et al. 

model (left) and in an alternate version in which regulation coefficients for gKa are 

reversed (right). Each coefficient determines whether a conductance is up or down-

regulated when sensors are above or below targets (+1 = up-regulate if below 

target/down-regulate if above target; -1 = down-regulate if below target/up-regulate if 

above target.) (b) Pairwise scattergrams and histograms of the final values for the 7 

regulated maximal conductances after one hour simulated time using the original 

parameters of the Liu model (left) and the alternate model (right). Each scattergram is a 

2D histogram with color representing count (red = high, yellow = intermediate, green = 

low, blue = zero). In both sets of scattergrams the ranges plotted are zero through 440 

μS (gNa), 8.6 μS (gCaT), 16.2 μS (gCaS), 402 μS (gKA), 402 μS (gKCa), 207 μS (gKd), 2.3 μS 

(gH)  (c) Detail of the pairwise relationships between gKd/gNa and gH/gCaT (pink boxes in 

b) shown as thinned scatter plots (5000 points) for the original model (top) and the 

alternate model (bottom). Example voltage traces of labeled points in solution space are 

shown to the right (horizontal line = 0 mV). 
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Figure 4
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