16,734 research outputs found
Lattice calculations on the spectrum of Dirac and Dirac-K\"ahler operators
We present a matrix technique to obtain the spectrum and the analytical index
of some elliptic operators defined on compact Riemannian manifolds. The method
uses matrix representations of the derivative which yield exact values for the
derivative of a trigonometric polynomial. These matrices can be used to find
the exact spectrum of an elliptic operator in particular cases and in general,
to give insight into the properties of the solution of the spectral problem. As
examples, the analytical index and the eigenvalues of the Dirac operator on the
torus and on the sphere are obtained and as an application of this technique,
the spectrum of the Dirac-Kahler operator on the sphere is explored.Comment: 11 page
Study of the order of the phase transition in pure U(1) gauge theory with Villain action
We address the question of the order of the deconfinement phase transition of
four dimensional U(1) lattice gauge theory. Simulations of the Z-gauge theory
dual to the Villain action on toroidal lattices up to lattice sizes of 28^4
give results consistent with both, a vanishing and a nonvanishing discontinuity
in the thermodynamic limit. A decision on the order of the phase transition
requires still larger lattice sizes.Comment: LATTICE98(gauge), 3 pages, 2 figure
Analytic Relations between Localizable Entanglement and String Correlations in Spin Systems
We study the relation between the recently defined localizable entanglement
and generalized correlations in quantum spin systems. Differently from the
current belief, the localizable entanglement is always given by the average of
a generalized string. Using symmetry arguments we show that in most spin 1/2
and spin 1 systems the localizable entanglement reduces to the spin-spin or
string correlations, respectively. We prove that a general class of spin 1
systems, which includes the Heisenberg model, can be used as perfect quantum
channel. These conclusions are obtained in analytic form and confirm some
results found previously on numerical grounds.Comment: 5 pages, RevTeX
Interband polarized absorption in InP polytypic superlattices
Recent advances in growth techniques have allowed the fabrication of
semiconductor nanostructures with mixed wurtzite/zinc-blende crystal phases.
Although the optical characterization of these polytypic structures is well
eported in the literature, a deeper theoretical understanding of how crystal
phase mixing and quantum confinement change the output linear light
polarization is still needed. In this paper, we theoretically investigate the
mixing effects of wurtzite and zinc-blende phases on the interband absorption
and in the degree of light polarization of an InP polytypic superlattice. We
use a single 88 kp Hamiltonian that describes both crystal
phases. Quantum confinement is investigated by changing the size of the
polytypic unit cell. We also include the optical confinement effect due to the
dielectric mismatch between the superlattice and the vaccum and we show it to
be necessary to match experimental results. Our calculations for large wurtzite
concentrations and small quantum confinement explain the optical trends of
recent photoluminescence excitation measurements. Furthermore, we find a high
sensitivity to zinc-blende concentrations in the degree of linear polarization.
This sensitivity can be reduced by increasing quantum confinement. In
conclusion, our theoretical analysis provides an explanation for optical trends
in InP polytypic superlattices, and shows that the interplay of crystal phase
mixing and quantum confinement is an area worth exploring for light
polarization engineering.Comment: 9 pages, 6 figures and 1 tabl
Topological flux sectors in extended U(1) gauge theory on T^4
We consider the 4d compact U(1) gauge theory with fundamental-adjoint action
on a hypertorus. We give a full characterization of the phase diagram of this
model in terms of topological flux sectors.Comment: 3 pages, 5 figures, Lattice2002(topology
Particle production in the outflow of a midlatitude storm
The concentrations of atmospheric gases and condensation nuclei (CN) or aerosol in the outflow of a storm were measured aboard a NASA DC-8 aircraft, as described in a companion paper [Twohy et al., 2002]. The data are used here to study the production of the aerosol. Major fluctuations in CN concentration are observed, in correlation with gas-phase species, but these are shown to arise as the result of the mixing of two distinct air masses. It is deduced that the CN originated in a storm outflow air mass and that its concentration before mixing was approximately uniform over a flight distance of about 200 km. The formation of the aerosol by nucleation followed by growth and coagulation is analyzed assuming that it consists of water and sulphuric acid produced locally by the oxidation of SO2. The analysis uses analytic models, and it is concluded that a 5 min burst of nucleation was followed by growth and coagulation over a period of about 5 hours. Both the mass and number concentrations of the observed aerosol can be reproduced by this analysis within a timescale consistent with that of the storm. The final number concentration is very insensitive to the initial SO2 concentration
Dynamics of radiating braneworlds
If the observable universe is a braneworld of Randall-Sundrum type, then
particle interactions at high energies will produce 5-dimensional gravitons
that escape into the bulk. As a result, the Weyl energy density on the brane
does not behave like radiation in the early universe, but does so only later,
in the low energy regime. Recently a simple model was proposed to describe this
modification of the Randall-Sundrum cosmology. We investigate the dynamics of
this model, and find the exact solution of the field equations. We use a
dynamical systems approach to analyze global features of the phase space of
solutions.Comment: error in figures corrected, reference adde
Cerebral and cardiovascular effects of analgesic doses of ketamine during a target controlled general anesthesia: a prospective randomized study
Introduction: Ketamine is increasingly being used in various pain settings. The purpose of this study was to
assess the effect of an analgesic dose of ketamine in the bispectral index (BIS), spectral edge frequency (SEF-95), density spectral array (DSA), cerebral oximetry (rSO2) and mean arterial pressure (MAP) during general
anaesthesia with a target controlled infusion.
Methods: A prospective, single-blinded and randomized study on adult patients scheduled for elective spine
surgery was carried out. After anaesthesia induction with propofol, remifentanil and rocuronium, when a stable BIS
value (45-55) was achieved, an automatic recording of BIS, SEF-95, rSO2 and MAP values during 9 min was
performed to establish patients baseline values. Subsequently, patients were randomly assigned to receive a
ketamine bolus dose of 0.2 mg/kg, 0.5 mg/kg or 1 mg/kg; all variables were recorded for additional 9 min after the
ketamine bolus, in the absence of any surgical stimulus. A p-value <0.05 was considered significant in the statistical
analysis.
Results and discussion: Thirty-nine patients were enrolled in the study. Our results show a dose-related
increase of SEF-95 and BIS values. DSA demonstrate a shift in the frequency range and power distribution towards
higher frequencies. Our results do not show significant differences in MAP and rSO2 values.
Conclusion: When ketamine is used intraoperatively in analgesic doses, the anaesthetist should anticipate an
increase in SEF-95 and BIS values which will not be associated with the level of anaesthesia.info:eu-repo/semantics/publishedVersio
Tratamento e reciclagem de águas residuárias em sistema intensivo de produção de leite.
bitstream/item/65245/1/CT-75-Tratamento-e-reciclagem-de-aguas.pd
- …