research

Lattice calculations on the spectrum of Dirac and Dirac-K\"ahler operators

Abstract

We present a matrix technique to obtain the spectrum and the analytical index of some elliptic operators defined on compact Riemannian manifolds. The method uses matrix representations of the derivative which yield exact values for the derivative of a trigonometric polynomial. These matrices can be used to find the exact spectrum of an elliptic operator in particular cases and in general, to give insight into the properties of the solution of the spectral problem. As examples, the analytical index and the eigenvalues of the Dirac operator on the torus and on the sphere are obtained and as an application of this technique, the spectrum of the Dirac-Kahler operator on the sphere is explored.Comment: 11 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020