13,054 research outputs found

    Superconformal defects in the tricritical Ising model

    Full text link
    We study superconformal defect lines in the tricritical Ising model in 2 dimensions. By the folding trick, a superconformal defect is mapped to a superconformal boundary of the N=1 superconformal unitary minimal model of c=7/5 with D_6-E_6 modular invariant. It turns out that the complete set of the boundary states of c=7/5 D_6-E_6 model cannot be interpreted as the consistent set of superconformal defects in the tricritical Ising model since it does not contain the "no defect" boundary state. Instead, we find a set of 18 consistent superconformal defects including "no defect" and satisfying the Cardy condition. This set also includes some defects which are not purely transmissive or purely reflective.Comment: 25 pages, 3 figures. v2: typos corrected. v3: clarification about spin structure aligned theory added, references adde

    Why People Fail to use Condoms for STD and HIV Prevention

    Get PDF
    The world is almost 30 years into the AIDS pandemic. People know how to prevent HIV by using abstinence, monogamy and condom use. Despite this awareness, people still put themselves at risk for HIV and other sexually transmitted diseases. Why? This thesis catalogues the various reasons why people fail to use condoms during sexual intercourse. The qualitative information represents specific selections from anonymous personal interviews with over 1500 individuals combined with other available data and information from other HIV field workers and organizations. The findings show four major categories of influences effecting an individual\u27s decision to engage in unprotected sexual intercourse. These major categories include 1. Partner influence 2. Perception of risk 3. Desire for health and 4. Personal barriers to condom use Each major category is explained and analyzed. Finally a series of practical solutions are offered to address each of the different barriers to HIV and STD prevention

    Properties of dust in the detached shells around U Ant, DR Ser, and V644 Sco

    Full text link
    Understanding the properties of dust produced during the asymptotic giant branch phase of stellar evolution is important for understanding the evolution of stars and galaxies. Recent observations of the carbon AGB star R Scl have shown that observations at far-infrared and submillimetre wavelengths can effectively constrain the grain sizes in the shell, while the total mass depends on the structure of the grains (solid vs. hollow or fluffy). We aim to constrain the properties of the dust observed in the submillimetre in the detached shells around the three carbon AGB stars U Ant, DR Ser, and V644 Sco, and to investigate the constraints on the dust masses and grain sizes provided by far-infrared and submm observations. We observed the carbon AGB stars U Ant, DR Ser, and V644 Sco at 870 micron using LABOCA on APEX. Combined with observations from the optical to far-infrared, we produced dust radiative transfer models of the spectral energy distributions (SEDs) with contributions from the stars, present-day mass-loss and detached shells. We tested the effect of different total dust masses and grain sizes on the SED, and attempted to consistently reproduce the SEDs from the optical to the submm. We derive dust masses in the shells of a few 10e-5 Msun, assuming spherical, solid grains. The best-fit grain radii are comparatively large, and indicate the presence of grains between 0.1 micron-2 micron. The LABOCA observations suffer from contamination from 12CO(3-2), and hence gives fluxes that are higher than the predicted dust emission at submm wavelengths. We investigate the effect on the best-fitting models by assuming different degrees of contamination and show that far-infrared and submillimetre observations are important to constrain the dust mass and grain sizes in the shells.Comment: Accepted by A&

    Measuring the equation of state of a hard-disc fluid

    Full text link
    We use video microscopy to study a two-dimensional (2D) model fluid of charged colloidal particles suspended in water and compute the pressure from the measured particle configurations. Direct experimental control over the particle density by means of optical tweezers allows the precise measurement of pressure as a function of density. We compare our data with theoretical predictions for the equation of state, the pair-correlation function and the compressibility of a hard-disc fluid and find good agreement, both for the fluid and the solid phase. In particular the location of the transition point agrees well with results from Monte Carlo simulations.Comment: 7 pages, to appear in EPL, slightly corrected versio

    On the Nagaoka polaron in the t-J model

    Full text link
    It is widely believed that a single hole in the two (or three) dimensional t-J model, for sufficiently small exchange coupling J, creates a ferromagnetic bubble around itself, a finite J remnant of the ferromagnetic groundstate at J=0 (the infinite U Hubbard model), first established by Nagaoka. We investigate this phenomenon in two dimensions using the density matrix renormalization group, for system sizes up to 9x9. We find that the polaron forms for J/t<0.02-0.03 (a somewhat larger value than estimated previously). Although finite-size effects appear large, our data seems consistent with the expected 1.1(J/t)^{-1/4} variation of polarion radius. We also test the Brinkman-Rice model of non-retracing paths in a Neel background, showing that it is quite accurate, at larger J. Results are also presented in the case where the Heisenberg interaction is dropped (the t-J^z model). Finally we discuss a "dressed polaron" picture in which the hole propagates freely inside a finite region but makes only self-retracing excursions outside this region.Comment: 7 pages, 9 encapsulated figure

    Chandra survey in the AKARI North Ecliptic Pole Deep Field. I. X-ray data, point-like source catalog, sensitivity maps, and number counts

    Full text link
    We present data products from the 300 ks Chandra survey in the AKARI North Ecliptic Pole (NEP) deep field. This field has a unique set of 9-band infrared photometry covering 2-24 micron from the AKARI Infrared Camera, including mid-infrared (MIR) bands not covered by Spitzer. The survey is one of the deepest ever achieved at ~15 micron, and is by far the widest among those with similar depths in the MIR. This makes this field unique for the MIR-selection of AGN at z~1. We design a source detection procedure, which performs joint Maximum Likelihood PSF fits on all of our 15 mosaicked Chandra pointings covering an area of 0.34 square degree. The procedure has been highly optimized and tested by simulations. We provide a point source catalog with photometry and Bayesian-based 90 per cent confidence upper limits in the 0.5-7, 0.5-2, 2-7, 2-4, and 4-7 keV bands. The catalog contains 457 X-ray sources and the spurious fraction is estimated to be ~1.7 per cent. Sensitivity and 90 per cent confidence upper flux limits maps in all bands are provided as well. We search for optical MIR counterparts in the central 0.25 square degree, where deep Subaru Suprime-Cam multiband images exist. Among the 377 X-ray sources detected there, ~80 per cent have optical counterparts and ~60 per cent also have AKARI mid-IR counterparts. We cross-match our X-ray sources with MIR-selected AGN from Hanami et al. (2012). Around 30 per cent of all AGN that have MID-IR SEDs purely explainable by AGN activity are strong Compton-thick AGN candidates.Comment: 23 pages, 20 figures; catalogs, sensitivity maps, and upper limit flux maps are available from the VizieR Servic

    Tobacco Control Measures to Reduce Socioeconomic Inequality in Smoking: The Necessity, Time-Course Perspective, and Future Implications

    Get PDF
    Previous systematic reviews of population-level tobacco control interventions and their effects on smoking inequality by socioeconomic factors concluded that tobacco taxation reduce smoking inequality by income (although this is not consistent for other socioeconomic factors, such as education). Inconsistent results have been reported for socioeconomic differences, especially for other tobacco control measures, such as smoke-free policies and anti-tobacco media campaigns. To understand smoking inequality itself and to develop strategies to reduce smoking inequality, knowledge of the underlying principles or mechanisms of the inequality over a long time-course may be important. For example, the inverse equity hypothesis recognizes that inequality may evolve in stages. New population-based interventions are initially primarily accessed by the affluent and well-educated, so there is an initial increase in socioeconomic inequality (early stage). These inequalities narrow when the deprived population can access the intervention after the affluent have gained maximum benefit (late stage). Following this hypothesis, all tobacco control measures may have the potential to reduce smoking inequality, if they continue for a long term, covering and reaching all socioeconomic subgroups. Re-evaluation of the impact of the interventions on smoking inequality using a long time-course perspective may lead to a favorable next step in equity effectiveness. Tackling socioeconomic inequality in smoking may be a key public health target for the reduction of inequality in health
    corecore