3,288 research outputs found

    Polarization effects in microcoil resonators

    No full text
    Optical microcoil resonators (OMRs), formed by coiling a micron-diameter fibre around a rod as shown in Figure 1a, provide a unique resonator geometry in which light can evanescently couple between adjacent turns to produce high Q resonances. Furthermore, OMRs fabricated from a pigtailed fibre taper offer much lower coupling losses than cavity resonators. Applications in fields such as fluidic and temperature sensing have already been investigated, and the small fibre diameter and effective modal area indicate that OMRs are a promising platform for studying nonlinear interactions. A detailed understanding of OMR optical characteristics is crucial for further development, but theoretical studies have thus far neglected any polarization dependency. In this work, the influence of the fibre’s birefringence on the polarization of propagating light was studied by numerically solving polarization dependant coupled mode equations. The resulting transmission and dispersion properties are discussed for different degrees of fibre twist (Figure 1b). In addition to the linear behaviour, the nonlinear regime was explored, by incorporating a Kerr term, and found to be strongly enhanced around resonances

    Dimensionality of the spatio-temporal entanglement of PDC photon pairs

    Get PDF
    In this work the Schmidt number of the two-photon state generated by parametric-down conversion (PDC) is evaluated in the framework of a fully spatio-temporal model for PDC. A comparison with the results obtained in either purely spatial or purely temporal models shows that the degree of entanglement of the PDC state cannot be trivially reduced to the product of the Schmidt numbers obtained in models with lower dimensionality, unless the detected bandwidth is very narrow. This result is a consequence of the non-factorability of the state in the spatial and temporal degrees of freedoms of twin photons. In the limit of a broad pump beam, we provide a geometrical interpretation of the Schmidt number, as the ratio between the volume of the phase matching region and of a correlation volume.Comment: 17 pages, 10 figures. Submitted to Phys. Rev.

    Heavy Quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature

    Get PDF
    We calculate the heavy quarkonium energy levels and decay widths in a quark-gluon plasma, whose temperature T and screening mass m_D satisfy the hierarchy m alpha_s >> T >> m alpha_s^2 >> m_D (m being the heavy-quark mass), at order m alpha_s^5. We first sequentially integrate out the scales m, m alpha_s and T, and, next, we carry out the calculations in the resulting effective theory using techniques of integration by regions. A collinear region is identified, which contributes at this order. We also discuss the implications of our results concerning heavy quarkonium suppression in heavy ion collisions.Comment: 25 pages, 2 figure

    The QCD Potential at O(1/m)O(1/m)

    Get PDF
    Within an effective field theory framework, we obtain an expression for the next-to-leading term in the 1/m1/m expansion of the singlet QQˉQ{\bar Q} QCD potential in terms of Wilson loops, which holds beyond perturbation theory. The ambiguities in the definition of the QCD potential beyond leading order in 1/m1/m are discussed and a specific expression for the 1/m1/m potential is given. We explicitly evaluate this expression at one loop and compare the outcome with the existing perturbative results. On general grounds we show that for quenched QED and fully Abelian-like models this expression exactly vanishes.Comment: 19 pages, LaTeX, 1 figure. Journal version. Discussion refined, misprints corrected, few references added; results unchange

    Poincare' invariance and the heavy-quark potential

    Get PDF
    We derive and discuss the constraints induced by Poincare' invariance on the form of the heavy-quark potential up to order 1/m^2. We present two derivations: one uses general arguments directly based on the Poincare' algebra and the other follows from an explicit calculation on the expression of the potential in terms of Wilson loops. We confirm relations from the literature, but also clarify the origin of a long-standing false statement pointed out recently.Comment: 20 pages, 4 figure

    Effectiveness of delayed-release dimethyl fumarate on patient-reported outcomes and clinical measures in patients with relapsing-remitting multiple sclerosis in a real-world clinical setting: PROTEC.

    Get PDF
    Ensaio clínico PROTEC, Protocolo nº 109MS408Abstract BACKGROUND: Patient-reported outcomes (PRO) and clinical outcomes give a broad assessment of relapsing-remitting multiple sclerosis (RRMS) disease. OBJECTIVE: The aim is to evaluate the effectiveness of delayed-release dimethyl fumarate (DMF) on disease activity and PROs in patients with RRMS in the clinic. METHODS: PROTEC, a phase 4, open-label, 12-month observational study, assessed annualized relapse rate (ARR), proportion of patients relapsed, and changes in PROs. Newly diagnosed and early MS (≤3.5 EDSS and ≤1 relapse in the prior year) patient subgroups were evaluated. RESULTS: Unadjusted ARR at 12 months post-DMF versus 12 months before DMF initiation was 75% lower (0.161 vs. 0.643, p < 0.0001) overall (n = 1105) and 84%, 77%, and 71% lower in newly diagnosed, ≤3.5 EDSS, and ≤1 relapse subgroups, respectively. Overall, 88% of patients were relapse-free 12 months after DMF initiation (84%, newly diagnosed; 88%, ≤3.5 EDSS; 88%, ≤1 relapse). PRO measures for fatigue, treatment satisfaction, daily living, and work improved significantly over 12 months of DMF versus baseline. CONCLUSION: At 12 months after versus 12 months before DMF initiation, ARR was significantly lower, the majority of patients were relapse-free, and multiple PRO measures showed improvement (overall and for subgroups), suggesting that DMF is effective based on clinical outcomes and from a patient perspective.Clinical trial: A Study Evaluating the Effectiveness of Tecfidera (Dimethyl Fumarate) on Multiple Sclerosis (MS) Disease Activity and Patient-Reported Outcomes (PROTEC), NCT01930708,info:eu-repo/semantics/publishedVersio

    A first estimate of triply heavy baryon masses from the pNRQCD perturbative static potential

    Get PDF
    Within pNRQCD we compute the masses of spin-averaged triply heavy baryons using the now-available NNLO pNRQCD potentials and three-body variational approach. We focus in particular on the role of the purely three-body interaction in perturbation theory. This we find to be reasonably small and of the order 25 MeV Our prediction for the Omega_ccc baryon mass is 4900(250) in keeping with other approaches. We propose to search for this hitherto unobserved state at B factories by examining the end point of the recoil spectrum against triple charm.Comment: 18 figures, 21 page

    Theory and Phenomenology of Heavy Flavor at RHIC

    Full text link
    We review the problem of heavy-quark diffusion in the Quark-Gluon Plasma and its ramifications for heavy-quark spectra in heavy-ion collisions at RHIC. In particular, we attempt to reconcile underlying mechanisms of several seemingly different approaches that have been put forward to explain the large suppression and elliptic flow of non-photonic electron spectra. We also emphasize the importance of a quantitative description of the bulk medium evolution to extract reliable values for the heavy-quark diffusion coefficient.Comment: 8 pages latex, including 10 eps figures; plenary talk at SQM08, Beijing (China), Oct. 06-10, 200

    The spin-orbit potential and Poincar\'e invariance in finite temperature pNRQCD

    Full text link
    Heavy quarkonium at finite temperature has been the subject of intense theoretical studies, for it provides a potentially clean probe of the quark-gluon plasma. Recent studies have made use of effective field theories to exploit in a systematic manner the hierarchy of energy scales that characterize the system. In the case of a quarkonium in a medium whose temperature is smaller than the typical momentum transfer in the bound state but larger than its energy, the suitable effective field theory is pNRQCD_HTL, where degrees of freedom with energy or momentum larger than the binding energy have been integrated out. Thermal effects are expected to break Poincar\'e invariance, which, at zero temperature, manifests itself in a set of exact relations between the matching coefficients of the effective field theory. In the paper, we evaluate the leading-order thermal corrections to the spin-orbit potentials of pNRQCD_HTL and show that Poincar\'e invariance is indeed violated.Comment: 17 page, 4 figures. Version published on JHE
    corecore