14 research outputs found

    Examining volumetric gradients based on the frustum surface ratio in the brain in autism spectrum disorder.

    Get PDF
    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is accompanied by neurodevelopmental differences in regional cortical volume (CV), and a potential layer-specific pathology. Conventional measures of CV, however, do not indicate how volume is distributed across cortical layers. In a sample of 92 typically developing (TD) controls and 92 adult individuals with ASD (aged 18-52 years), we examined volumetric gradients by quantifying the degree to which CV is weighted from the pial to the white surface of the brain. Overall, the spatial distribution of Frustum Surface Ratio (FSR) followed the gyral and sulcal pattern of the cortex and approximated a bimodal Gaussian distribution caused by a linear mixture of vertices on gyri and sulci. Measures of FSR were highly correlated with vertex-wise estimates of mean curvature, sulcal depth, and pial surface area, although none of these features explained more than 76% variability in FSR on their own. Moreover, in ASD, we observed a pattern of predominant increases in the degree of FSR relative to TD controls, with an atypical neurodevelopmental trajectory. Our findings suggest a more outward-weighted gradient of CV in ASD, which may indicate a larger contribution of supragranular layers to regional differences in CV

    Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood

    Get PDF
    Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms

    Software countermeasures for control flow integrity of smart card C codes

    Get PDF
    International audienceFault attacks can target smart card programs in order to disrupt an execution and gain an advantage over the data or the embedded functionalities. Among all possible attacks, control flow attacks aim at disrupting the normal execution flow. Identifying harmful control flow attacks as well as designing countermeasures at software level are tedious and tricky for developers. In this paper, we propose a methodology to detect harmful intra-procedural jump attacks at source code level and to automatically inject formally-proven countermeasures. The proposed software countermeasures defeat 100% of attacks that jump over at least two C source code statements or beyond. Experiments show that the resulting code is also hardened against unexpected function calls and jump attacks at assembly level

    Evaluating the Effectiveness of Current Anti-ROP Defenses

    No full text

    Jump-oriented programming: A new class of code-reuse attack

    No full text
    10.1145/1966913.1966919Proceedings of the 6th International Symposium on Information, Computer and Communications Security, ASIACCS 201130-4

    eavesROP: Listening for ROP Payloads in Data Streams

    No full text
    We consider the problem of detecting exploits based on return-oriented programming. In contrast to previous works we investigate to which extent we can detect ROP payloads by only analysing streaming data, i.e., we do not assume any modifications to the target machine, its kernel or its libraries. Neither do we attempt to execute any potentially malicious code in order to determine if it is an attack. While such a scenario has its limitations, we show that using a layered approach with a filtering mechanism together with the Fast Fourier Transform, it is possible to detect ROP payloads even in the presence of noise and assuming that the target system employs ASLR. Our approach, denoted eavesROP, thus provides a very lightweight and easily deployable mitigation against certain ROP attacks. It also provides the added merit of detecting the presence of a brute-force attack on ASLR since library base addresses are not assumed to be known by eavesROP

    The Effect of Aging on Low, Reduced, and Full Fat Cheddar Cheese Texture

    No full text
    This study investigated the effects of aging and fat content on the texture of Cheddar cheese, both mechanical and sensory aspects, over a 9-mo aging period. Cheeses of 6, 16, and 33% fat were tested at 0.5, 3, 6, and 9 mo of aging. Cheeses were evaluated by a trained sensory panel using an established texture lexicon as well as instrumental methods, which were used to probe cheese structure. Sensory analysis showed that low-fat cheeses were differentiated from full-fat cheeses by being more springy and firm and this difference widened as the cheeses aged. In addition, full-fat cheeses broke down more during chewing than the lower fat cheeses and the degree of breakdown increased with aging. Mechanical properties were divided by magnitude of deformation during the test and separated into 3 ranges: the linear viscoelastic region, the nonlinear region, and fracture point. These regions represent a stress/strain response from low to high magnitude, respectively. Strong relationships between sensory terms and rheological properties determined in the linear (maximum compliance) and nonlinear (critical stress and strain and a nonlinear shape factor) regions were revealed. Some correlations were seen with fracture values, but these were not as high as terms related to the nonlinear region of the cheeses. The correlations pointed to strain-weakening behavior being the critical mechanical property. This was associated with higher fat content cheeses breaking down more as strain increased up to fracture. Increased strain weakening associated with an increase in fat content was attributed to fat producing weak points in the protein network, which became initiation sites for fracture within the structure. This suggests that fat replacers need to serve this functional role

    Cross-sectional and longitudinal neuroanatomical profiles of distinct clinical (adaptive) outcomes in autism

    Get PDF
    Individuals with autism spectrum disorder (ASD) display significant variation in clinical outcome. For instance, across age, some individuals’ adaptive skills naturally improve or remain stable, while others’ decrease. To pave the way for ‘precision-medicine’ approaches, it is crucial to identify the cross-sectional and, given the developmental nature of ASD, longitudinal neurobiological (including neuroanatomical and linked genetic) correlates of this variation. We conducted a longitudinal follow-up study of 333 individuals (161 with ASD and 172 neurotypicals, aged 6-30 years), with two assessment time points separated by ~12-24 months. We collected behavioural (Vineland Adaptive Behavior Scale-II, VABS-II) and neuroanatomical (structural magnetic resonance imaging) data. ASD participants were grouped into clinically meaningful “Increasers”, “No-changers”, and “Decreasers” in adaptive behaviour (based on VABS-II scores). We compared each clinical subgroup’s neuroanatomy (surface area and cortical thickness at T1, ∆T (intra-individual change) and T2) to that of the neurotypicals. Next, we explored the neuroanatomical differences’ potential genomic associates using the Allen Human Brain Atlas. Clinical subgroups had distinct neuroanatomical profiles in surface area and cortical thickness at baseline, neuroanatomical development, and follow-up. These profiles were enriched for genes previously associated with ASD and for genes previously linked to neurobiological pathways implicated in ASD (e.g., excitation-inhibition systems). Our findings suggest that distinct clinical outcomes (i.e., intra-individual change in clinical profiles) linked to ASD core symptoms are associated with atypical cross-sectional and longitudinal, i.e., developmental, neurobiological profiles. If validated, our findings may advance the development of interventions, e.g., targeting mechanisms linked to relatively poorer outcomes

    Atypical measures of diffusion at the gray-white matter boundary in autism spectrum disorder in adulthood

    No full text
    Autism spectrum disorder (ASD) is a highly complex neurodevelopmental condition that is accompanied by neuroanatomical differences on the macroscopic and microscopic level. Findings from histological, genetic, and more recently in vivo neuroimaging studies converge in suggesting that neuroanatomical abnormalities, specifically around the gray-white matter (GWM) boundary, represent a crucial feature of ASD. However, no research has yet characterized the GWM boundary in ASD based on measures of diffusion. Here, we registered diffusion tensor imaging data to the structural T1-weighted images of 92 adults with ASD and 92 matched neurotypical controls in order to examine between-group differences and group-by-sex interactions in fractional anisotropy and mean diffusivity sampled at the GWM boundary, and at different sampling depths within the superficial white and into the gray matter. As hypothesized, we observed atypical diffusion at and around the GWM boundary in ASD, with between-group differences and group-by-sex interactions depending on tissue class and sampling depth. Furthermore, we identified that altered diffusion at the GWM boundary partially (i.e., ~50%) overlapped with atypical gray-white matter tissue contrast in ASD. Our study thus replicates and extends previous work highlighting the GWM boundary as a crucial target of neuropathology in ASD, and guides future work elucidating etiological mechanisms
    corecore