56 research outputs found
A mid-IR study of Hickson Compact Groups II. Multi-wavelength analysis of the complete GALEX-Spitzer Sample
We present a comprehensive study on the impact of the environment of compact
galaxy groups on the evolution of their members using a multi-wavelength
analysis, from the UV to the infrared, for a sample of 32 Hickson compact
groups (HCGs) containing 135 galaxies. Fitting the SEDs of all galaxies with
the state-of-the-art model of da Cunha (2008) we can accurately calculate their
mass, SFR, and extinction, as well as estimate their infrared luminosity and
dust content. We compare our findings with samples of field galaxies,
early-stage interacting pairs, and cluster galaxies with similar data. We find
that classifying the groups as dynamically "old" or "young", depending on
whether or not at least one quarter of their members are early-type systems, is
physical and consistent with past classifications of HCGs based on their atomic
gas content. [...ABRIDGED...] We also examine their SF properties, UV-optical
and mid-IR colors, and we conclude that all the evidence point to an
evolutionary scenario in which the effects of the group environment and the
properties of the galaxy members are not instantaneous. Early on, the influence
of close companions to group galaxies is similar to the one of galaxy pairs in
the field. However, as the time progresses, the effects of tidal torques and
minor merging, shape the morphology and star formation history of the group
galaxies, leading to an increase of the fraction of early-type members and a
rapid built up of the stellar mass in the remaining late-type galaxies.Comment: Accepted for publication in A&A. Figure resolution degraded for arXiv
limits, full resolution paper available at
http://www.physics.uoc.gr/~bitsakis/paperII_bitsakis.pd
Scoring a forced-choice image-based assessment of personality: A comparison of machine learning, regression, and summative approaches
Recent years have seen rapid advancements in the way that personality is measured, resulting in a number of innovative predictive measures being proposed, including using features extracted from videos and social media profiles. In the context of selection, game- and image-based assessments of personality are emerging, which can overcome issues like social desirability bias, lack of engagement and low response rates that are associated with traditional self-report measures. Forced-choice formats, where respondents are asked to rank responses, can also mitigate issues such as acquiescence and social desirability bias. Previously, we reported on the development of a gamified forced-choice image-based assessment of the Big Five personality traits created for use in selection, using Lasso regression for the scoring algorithms. In this study, we compare the machine-learning-based Lasso approach to ordinary least squares regression, as well as the summative approach that is typical of forced-choice formats. We find that the Lasso approach performs best in terms of generalisability and convergent validity, although the other methods have greater discriminate validity. We recommend the use of predictive Lasso regression models for scoring forced-choice image-based measures of personality over the other approaches. Potential further studies are suggested
Studying the evolution of galaxies in compact groups over the past 3 Gyr - II. The importance of environment in the suppression of star formation
We present an in depth study on the evolution of galaxy properties in compact
groups over the past 3 Gyr. We are using the largest multi-wavelength sample
to-date, comprised 1770 groups (containing 7417 galaxies), in the redshift
range of 0.01<z<0.23. To derive the physical properties of the galaxies we rely
on ultraviolet (UV)-to-infrared spectral energy distribution modeling, using
CIGALE. Our results suggest that during the 3 Gyr period covered by our sample,
the star formation activity of galaxies in our groups has been substantially
reduced (3-10 times). Moreover, their star formation histories as well as their
UV-optical and mid-infrared colors are significantly different from those of
field and cluster galaxies, indicating that compact group galaxies spend more
time transitioning through the green valley. The morphological transformation
from late-type spirals into early-type galaxies occurs in the mid-infrared
transition zone rather than in the UV-optical green valley. We find evidence of
shocks in the emission line ratios and gas velocity dispersions of the
late-type galaxies located below the star forming main sequence. Our results
suggest that in addition to gas stripping, turbulence and shocks might play an
important role in suppressing the star formation in compact group galaxies.Comment: (Accepted for publication in MNRAS, date of submission November 18,
2015
Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226
We present archival Spitzer photometry and spectroscopy, and Herschel
photometry, of the peculiar "Green Valley" elliptical galaxy NGC~3226. The
galaxy, which contains a low-luminosity AGN, forms a pair with NGC~3227, and is
shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and
16m reveals a curved plume structure 3 kpc in extent, embedded within the
core of the galaxy, and coincident with the termination of a 30 kpc-long HI
tail. In-situ star formation associated with the IR plume is identified from
narrow-band HST imaging. The end of the IR-plume coincides with a warm
molecular hydrogen disk and dusty ring, containing 0.7-1.1 10
M detected within the central kpc. Sensitive upper limits to the
detection of cold molecular gas may indicate that a large fraction of the H
is in a warm state. Photometry, derived from the UV to the far-IR, shows
evidence for a low star formation rate of 0.04 M yr
averaged over the last 100 Myrs. A mid-IR component to the Spectral Energy
Distribution (SED) contributes 20 of the IR luminosity of the galaxy,
and is consistent with emission associated with the AGN. The current measured
star formation rate is insufficient to explain NGC3226's global UV-optical
"green" colors via the resurgence of star formation in a "red and dead" galaxy.
This form of "cold accretion" from a tidal stream would appear to be an
inefficient way to rejuvenate early-type galaxies, and may actually inhibit
star formation.Comment: Accepted for Publication ApJ Oct 201
Strong Far-IR Cooling Lines, Peculiar CO Kinematics and Possible Star Formation Suppression in Hickson Compact Group 57
We present [C II] and [O I] observations from Herschel and CO(1-0) maps from
the Combined Array for{\dag} Research in Millimeter Astronomy (CARMA) of the
Hickson Compact Group HCG 57, focusing on the galaxies HCG 57a and HCG 57d. HCG
57a has been previously shown to contain enhanced quantities of warm molecular
hydrogen consistent with shock and/or turbulent heating. Our observations show
that HCG 57d has strong [C II] emission compared to L and weak
CO(1-0), while in HCG 57a, both the [C II] and CO(1-0) are strong. HCG 57a lies
at the upper end of the normal distribution of [C II]/CO and [C II]/FIR ratios,
and its far-IR cooling supports a low density warm diffuse gas that falls close
to the boundary of acceptable PDR models. However, the power radiated in the [C
II] and warm H emission have similar magnitudes, as seen in other
shock-dominated systems and predicted by recent models. We suggest that
shock-heating of the [C II] is a viable alternative to photoelectric heating in
violently disturbed diffuse gas. The existence of shocks is also consistent
with peculiar CO kinematics in the galaxy, indicating highly non-circular
motions are present. These kinematically disturbed CO regions also show
evidence of suppressed star formation, falling a factor of 10-30 below normal
galaxies on the Kennicutt-Schmidt relation. We suggest that the peculiar
properties of both galaxies are consistent with a highly dissipative off-center
collisional encounter between HCG 57d and 57a, creating ring-like morphologies
in both systems. Highly dissipative gas-on-gas collisions may be more common in
dense groups because of the likelihood of repeated multiple encounters. The
possibility of shock-induced SF suppression may explain why a subset of these
HCG galaxies have been found previously to fall in the mid-infrared green
valley.Comment: ApJ accepted, 16 pages, 12 figures, 3 table
Herschel observations of Hickson compact groups of galaxies: Unveiling the properties of cold dust
We present a Herschel far-infrared and sub-millimetre (sub-mm) study of a sample of 120 galaxies in 28 Hickson compact groups (HCGs). Fitting their UV to sub-mm spectral energy distributions with the model of da Cunha et al. (2008), we accurately estimate the dust masses, luminosities, and temperatures of the individual galaxies. We find that nearly half of the late-type galaxies in dynamically “old” groups, those with more than 25% of early-type members and redder UV-optical colours, also have significantly lower dustto-stellar mass ratios compared to those of actively star-forming galaxies of the same mass found both in HCGs and in the field. Examining their dust-to-gas mass ratios, we conclude that dust was stripped out of these systems as a result of the gravitational and hydrodynamic interactions, experienced owing to previous encounters with other group members. About 40% of the early-type galaxies (mostly lenticulars), in dynamically “old” groups, display dust properties similar to those of the UV-optical red late-type galaxies. Given their stellar masses, star formation rates, and UV-optical colours, we suggest that red late-type and dusty lenticular galaxies represent transition populations between blue star-forming disk galaxies and quiescent early-type ellipticals. On the other hand, both the complete absence of any correlation between the dust and stellar masses of the dusty ellipticals and their enhanced star formation activity, suggest the increase in their gas and dust content due to accretion and merging. Our deep Herschel observations also allow us to detect the presence of diffuse cold intragroup dust in 4 HCGs. We also find that the fraction of 250 μm emission that is located outside of the main bodies of both the red late-type galaxies and the dusty lenticulars is 15−20% of their integrated emission at this band. All these findings are consistent with an evolutionary scenario in which gas dissipation, shocks, and turbulence, in addition to tidal interactions, shape the evolution of galaxies in compact groups
- …