474 research outputs found

    2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

    Get PDF
    Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets' height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results

    2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

    Get PDF
    Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets' height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results

    2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

    Get PDF
    Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets' height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results

    2D PbS Nanosheets Synthesis and Their Applications as Field Effect Transistors or Solar Cells

    Get PDF
    Two-dimensional, solution-processable semiconductor materials are interesting for low-cost electronic applications [1]. We demonstrate the synthesis of lead sulfide nanosheets and how their size, shape and height can be tuned by varying concentrations of pre-cursors, ligands and by varying the reaction temperature. Especially, the charge carrier confinement in the nanosheets' height adjustable from 2 to 20 nm has a decisive impact on their electronic properties. This is demonstrated by their use as conduction channel in a field effect transistor [2]. Recently we also showed that especially thin nanosheets show a high carrier multiplication (CM) efficiency [3] which could make them, through the confinement induced band gap and high photoconductivity, very attractive for application in photovoltaic devices. We are already able to manufacture photovoltaic devices out of single nanosheets which show promising results

    Multipole vector anomalies in the first-year WMAP data: a cut-sky analysis

    Full text link
    We apply the recently defined multipole vector framework to the frequency-specific first-year WMAP sky maps, estimating the low-l multipole coefficients from the high-latitude sky by means of a power equalization filter. While most previous analyses of this type have considered only heavily processed (and foreground-contaminated) full-sky maps, the present approach allows for greater control of residual foregrounds, and therefore potentially also for cosmologically important conclusions. The low-l spherical harmonics coefficients and corresponding multipole vectors are tabulated for easy reference. Using this formalism, we re-assess a set of earlier claims of both cosmological and non-cosmological low-l correlations based on multipole vectors. First, we show that the apparent l=3 and 8 correlation claimed by Copi et al. (2004) is present only in the heavily processed map produced by Tegmark et al. (2003), and must therefore be considered an artifact of that map. Second, the well-known quadrupole-octopole correlation is confirmed at the 99% significance level, and shown to be robust with respect to frequency and sky cut. Previous claims are thus supported by our analysis. Finally, the low-l alignment with respect to the ecliptic claimed by Schwarz et al. (2004) is nominally confirmed in this analysis, but also shown to be very dependent on severe a-posteriori choices. Indeed, we show that given the peculiar quadrupole-octopole arrangement, finding such a strong alignment with the ecliptic is not unusual.Comment: 13 pages, 2 figures; corrected typos; added reference. Accepted for publication in Ap

    Footprints of Statistical Anisotropies

    Get PDF
    We propose and develop a formalism to describe and constrain statistically anisotropic primordial perturbations. Starting from a decomposition of the primordial power spectrum in spherical harmonics, we find how the temperature fluctuations observed in the CMB sky are directly related to the coefficients in this harmonic expansion. Although the angular power spectrum does not discriminate between statistically isotropic and anisotropic perturbations, it is possible to define analogous quadratic estimators that are direct measures of statistical anisotropy. As a simple illustration of our formalism we test for the existence of a preferred direction in the primordial perturbations using full-sky CMB maps. We do not find significant evidence supporting the existence of a dipole component in the primordial spectrum.Comment: 26 pages, 5 double figures. Uses RevTeX

    On the CMB large-scales angular correlations

    Full text link
    We study the large-scale angular correlation signatures of the Cosmic Microwave Background (CMB) temperature fluctuations from WMAP data in several spherical cap regions of the celestial sphere, outside the Kp0 or Kp2 cut-sky masks. We applied a recently proposed method to CMB temperature maps, which permits an accurate analysis of their angular correlations in the celestial sphere through the use of normalized histograms of the number of pairs of such objects with a given angular separation versus their angular separation. The method allows for a better comparison of the results from observational data with the expected CMB angular correlations of a statistically isotropic Universe, computed from Monte Carlo maps according to the WMAP best-fit Lambda CDM model. We found that the, already known, anomalous lack of large-scale power in full-sky CMB maps are mainly due to missing angular correlations of quadrupole-like signature. This result is robust with respect to frequency CMB maps and cut-sky masks. Moreover, we also confirm previous results regarding the unevenly distribution in the sky of the large-scale power of WMAP data. In a bin-to-bin correlations analyses, measured by the full covariance matrix chi^2 statistic, we found that the angular correlations signatures in opposite Galactic hemispheres are anomalous at the 98%-99% confidence level.Comment: 7 pages, 11 color figures, accepted for publication in A&

    Hemispherical power asymmetry: parameter estimation from CMB WMAP5 data

    Full text link
    We reexamine the evidence of the hemispherical power asymmetry, detected in the CMB WMAP data using a new method. At first, we analyze the hemispherical variance ratios and compare these with simulated distributions. Secondly, working within a previously-proposed CMB bipolar modulation model, we constrain model parameters: the amplitude and the orientation of the modulation field as a function of various multipole bins. Finally, we select three ranges of multipoles leading to the most anomalous signals, and we process corresponding 100 Gaussian, random field (GRF) simulations, treated as observational data, to further test the statistical significance and robustness of the hemispherical power asymmetry. For our analysis we use the Internally-Linearly-Coadded (ILC) full sky map, and KQ75 cut-sky V channel, foregrounds reduced map of the WMAP five year data (V5). We constrain the modulation parameters using a generic maximum a posteriori method. In particular, we find differences in hemispherical power distribution, which when described in terms of a model with bipolar modulation field, exclude the field amplitude value of the isotropic model A=0 at confidence level of ~99.5% (~99.4%) in the multipole range l=[7,19] (l=[7,79]) in the V5 data, and at the confidence level ~99.9% in the multipole range l=[7,39] in the ILC5 data, with the best fit (modal PDF) values in these particular multipole ranges of A=0.21 (A=0.21) and A=0.15 respectively. However, we also point out that similar or larger significances (in terms of rejecting the isotropic model), and large best-fit modulation amplitudes are obtained in GRF simulations as well, which reduces the overall significance of the CMB power asymmetry down to only about 94% (95%) in the V5 data, in the range l=[7,19] (l=[7,79]).Comment: 24 pages, 10 figures; few typos corrected; published in JCA

    Searching for a Cosmological Preferred Axis: Union2 Data Analysis and Comparison with Other Probes

    Full text link
    We review, compare and extend recent studies searching for evidence for a preferred cosmological axis. We start from the Union2 SnIa dataset and use the hemisphere comparison method to search for a preferred axis in the data. We find that the hemisphere of maximum accelerating expansion rate is in the direction (l,b)=(3093+23,1810+11)(l,b)=({309^\circ}^{+23^\circ}_{-3^\circ}, {18^\circ}^{+11^\circ}_{-10^\circ}) (\omm=0.19) while the hemisphere of minimum acceleration is in the opposite direction (l,b)=(1293+23,1811+10)(l,b)=({129^\circ}^{+23^\circ}_{-3^\circ},{-18^\circ}^{+10^\circ}_{-11^\circ}) (\omm=0.30). The level of anisotropy is described by the normalized difference of the best fit values of \omm between the two hemispheres in the context of \lcdm fits. We find a maximum anisotropy level in the Union2 data of \frac{\Delta \ommax}{\bomm}=0.43\pm 0.06. Such a level does not necessarily correspond to statistically significant anisotropy because it is reproduced by about 3030% of simulated isotropic data mimicking the best fit Union2 dataset. However, when combined with the axes directions of other cosmological observations (bulk velocity flow axis, three axes of CMB low multipole moments and quasar optical polarization alignment axis), the statistical evidence for a cosmological anisotropy increases dramatically. We estimate the probability that the above independent six axes directions would be so close in the sky to be less than 11%. Thus either the relative coincidence of these six axes is a very large statistical fluctuation or there is an underlying physical or systematic reason that leads to their correlation.Comment: 10 pages, 7 figures. Accepted in JCAP (to appear). Extended analysis with redshift tomography of SnIa, included errorbars and increased number of axes. The Mathematica 7 files with the data used for the production of the figures along with a Powerpoint file with additional figures may be downloaded from http://leandros.physics.uoi.gr/anisotrop

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3σ3\sigma for r=(T/S)>=103r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected
    corecore