2,010 research outputs found
A Super-Fast Distributed Algorithm for Bipartite Metric Facility Location
The \textit{facility location} problem consists of a set of
\textit{facilities} , a set of \textit{clients} , an
\textit{opening cost} associated with each facility , and a
\textit{connection cost} between each facility and client
. The goal is to find a subset of facilities to \textit{open}, and to
connect each client to an open facility, so as to minimize the total facility
opening costs plus connection costs. This paper presents the first
expected-sub-logarithmic-round distributed O(1)-approximation algorithm in the
model for the \textit{metric} facility location problem on
the complete bipartite network with parts and . Our
algorithm has an expected running time of rounds, where . This result can be viewed as a continuation
of our recent work (ICALP 2012) in which we presented the first
sub-logarithmic-round distributed O(1)-approximation algorithm for metric
facility location on a \textit{clique} network. The bipartite setting presents
several new challenges not present in the problem on a clique network. We
present two new techniques to overcome these challenges. (i) In order to deal
with the problem of not being able to choose appropriate probabilities (due to
lack of adequate knowledge), we design an algorithm that performs a random walk
over a probability space and analyze the progress our algorithm makes as the
random walk proceeds. (ii) In order to deal with a problem of quickly
disseminating a collection of messages, possibly containing many duplicates,
over the bipartite network, we design a probabilistic hashing scheme that
delivers all of the messages in expected- rounds.Comment: 22 pages. This is the full version of a paper that appeared in DISC
201
LabView Interface for School-Network DAQ Card
A low-cost DAQ card has been developed for school-network cosmic ray detector
projects, providing digitized data from photomultiplier tubes via a standard
serial interface. To facilitate analysis of these data and to provide students
with a starting point for custom readout systems, a model interface has been
developed using the National Instruments LabVIEW(R) system. This user-friendly
interface allows one to initialize the trigger coincidence conditions for
data-taking runs and to monitor incoming or pre-recorded data sets with
updating singles- and coincidence-rate plots and other user-selectable
histograms.Comment: 4 pages, 6 figures. Presented as Paper NS26-119 at IEEE-NSS 2003,
Portland, OR, by R. J. Wilke
Quantum Phase Tomography of a Strongly Driven Qubit
The interference between repeated Landau-Zener transitions in a qubit swept
through an avoided level crossing results in Stueckelberg oscillations in qubit
magnetization. The resulting oscillatory patterns are a hallmark of the
coherent strongly-driven regime in qubits, quantum dots and other two-level
systems. The two-dimensional Fourier transforms of these patterns are found to
exhibit a family of one-dimensional curves in Fourier space, in agreement with
recent observations in a superconducting qubit. We interpret these images in
terms of time evolution of the quantum phase of qubit state and show that they
can be used to probe dephasing mechanisms in the qubit.Comment: 5 pgs, 4 fg
Microdissection of human chromosomes by a laser microbeam
A laser microbeam apparatus, based on an excimer laser pumped dye laser is used to microdissect human chromosomes and to isolate a single chromosome slice
- …