455 research outputs found

    Analysis of hydrogen-rich magnetic white dwarfs detected in the Sloan Digital Sky Survey

    Get PDF
    We model the structure of the surface magnetic fields of the hydrogen-rich white dwarfs in the SDSS. We have calculated a grid of state-of-the-art theoretical optical spectra of hydrogen-rich magnetic white dwarfs with magnetic field strengths between 1 MG and 1200 MG for different angles, and for effective temperatures between 7000 K and 50000 K. We used a least-squares minimization scheme with an evolutionary algorithm in order to find the magnetic field geometry best fitting the observed data. We used simple centered dipoles or dipoles which were shifted along the dipole axis to model the coadded SDSS fiber spectrum of each object. We have analysed the spectra of all known magnetic DAs from the SDSS (97 previously published plus 44 newly discovered) and also investigated the statistical properties of magnetic field geometries of this sample. The total number of known magnetic white dwarfs already more than tripled by the SDSS and more objects are expected from a more systematic search. The magnetic fields span a range between ~1 and 900 MG. Our results further support the claim that Ap/Bp population is insufficient in generating the numbers and field strength distributions of the observed MWDs, and either another source of progenitor types or binary evolution is needed. Moreover clear indications for non-centered dipoles exist in about ~50% of the objects which is consistent with the magnetic field distribution observed in Ap/Bp stars.Comment: 15 pages, accepted for publication in A&A. For online version with full appendix figures, see http://www.ari.uni-heidelberg.de/mitarbeiter/bkulebi/papers/12570_online.pd

    Identification of A-colored Stars and Structure in the Halo of the Milky Way from SDSS Commissioning Data

    Get PDF
    A sample of 4208 objects with magnitude 15 < g* < 22 and colors of main sequence A stars has been selected from 370 square degrees of Sloan Digital Sky Survey (SDSS) commissioning observations. The data is from two long, narrow stripes, each with an opening angle of greater than 60 deg, at Galactic latitudes 36 < abs(b) < 63 on the celestial equator. An examination of the sample's distribution shows that these stars trace considerable substructure in the halo. Large overdensities of A-colored stars in the North at (l,b,R) = (350, 50, 46 kpc) and in the South at (157, -58, 33 kpc) and extending over tens of degrees are present in the halo of the Milky Way. Using photometry to separate the stars by surface gravity, both structures are shown to contain a sequence of low surface gravity stars consistent with identification as a blue horizontal branch (BHB). Both structures also contain a population of high surface gravity stars two magnitudes fainter than the BHB stars, consistent with their identification as blue stragglers (BSs). From the numbers of detected BHB stars, lower limits to the implied mass of the structures are 6x10^6 M_sun and 2x10^6 M_sun. The fact that two such large clumps have been detected in a survey of only 1% of the sky indicates that such structures are not uncommon in the halo. Simple spheroidal parameters are fit to a complete sample of the remaining unclumped BHB stars and yield (at r < 40 kpc) a fit to a halo distribution with flattening (c/a = 0.65+/-0.2) and a density falloff exponent of alpha = -3.2+/-0.3.Comment: AASTeX v5_0, 26 pages, 1 table, 20 figures, ApJ accepte

    Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample

    Get PDF
    We describe the algorithm for selecting quasar candidates for optical spectroscopy in the Sloan Digital Sky Survey. Quasar candidates are selected via their non-stellar colors in "ugriz" broad-band photometry, and by matching unresolved sources to the FIRST radio catalogs. The automated algorithm is sensitive to quasars at all redshifts lower than z=5.8. Extended sources are also targeted as low-redshift quasar candidates in order to investigate the evolution of Active Galactic Nuclei (AGN) at the faint end of the luminosity function. Nearly 95% of previously known quasars are recovered (based on 1540 quasars in 446 square degrees). The overall completeness, estimated from simulated quasars, is expected to be over 90%, whereas the overall efficiency (quasars:quasar candidates) is better than 65%. The selection algorithm targets ultraviolet excess quasars to i^*=19.1 and higher-redshift (z>3) quasars to i^*=20.2, yielding approximately 18 candidates per square degree. In addition to selecting ``normal'' quasars, the design of the algorithm makes it sensitive to atypical AGN such as Broad Absorption Line quasars and heavily reddened quasars.Comment: 62 pages, 15 figures (8 color), 8 tables. Accepted by AJ. For a version with higher quality color figures, see http://archive.stsci.edu/sdss/quasartarget/RichardsGT_qsotarget.preprint.p

    Analysis of the Hydrogen-rich Magnetic White Dwarfs in the SDSS

    Full text link
    We have calculated optical spectra of hydrogen-rich (DA) white dwarfs with magnetic field strengths between 1 MG and 1000 MG for temperatures between 7000 K and 50000 K. Through a least-squares minimization scheme with an evolutionary algorithm, we have analyzed the spectra of 114 magnetic DAs from the SDSS (95 previously published plus 14 newly discovered within SDSS, and five discovered by SEGUE). Since we were limited to a single spectrum for each object we used only centered magnetic dipoles or dipoles which were shifted along the magnetic dipole axis. We also statistically investigated the distribution of magnetic-field strengths and geometries of our sample.Comment: to appear in the proceedings of the 16th European Workshop on White Dwarfs, Barcelona, 200

    Faint NUV/FUV Standards from Swift/UVOT, GALEX and SDSS Photometry

    Full text link
    At present, the precision of deep ultraviolet photometry is somewhat limited by the dearth of faint ultraviolet standard stars. In an effort to improve this situation, we present a uniform catalog of eleven new faint (u sim17) ultraviolet standard stars. High-precision photometry of these stars has been taken from the Sloan Digital Sky Survey and Galaxy Evolution Explorer and combined with new data from the Swift Ultraviolet Optical Telescope to provide precise photometric measures extending from the Near Infrared to the Far Ultraviolet. These stars were chosen because they are known to be hot (20,000 < T_eff < 50,000 K) DA white dwarfs with published Sloan spectra that should be photometrically stable. This careful selection allows us to compare the combined photometry and Sloan spectroscopy to models of pure hydrogen atmospheres to both constrain the underlying properties of the white dwarfs and test the ability of white dwarf models to predict the photometric measures. We find that the photometry provides good constraint on white dwarf temperatures, which demonstrates the ability of Swift/UVOT to investigate the properties of hot luminous stars. We further find that the models reproduce the photometric measures in all eleven passbands to within their systematic uncertainties. Within the limits of our photometry, we find the standard stars to be photometrically stable. This success indicates that the models can be used to calibrate additional filters to our standard system, permitting easier comparison of photometry from heterogeneous sources. The largest source of uncertainty in the model fitting is the uncertainty in the foreground reddening curve, a problem that is especially acute in the UV.Comment: Accepted for publication in Astrophysical Journal. 31 pages, 13 figures, electronic tables available from ApJ or on reques

    Two novel approaches for photometric redshift estimation based on SDSS and 2MASS databases

    Full text link
    We investigate two training-set methods: support vector machines (SVMs) and Kernel Regression (KR) for photometric redshift estimation with the data from the Sloan Digital Sky Survey Data Release 5 and Two Micron All Sky Survey databases. We probe the performances of SVMs and KR for different input patterns. Our experiments show that the more parameters considered, the accuracy doesn't always increase, and only when appropriate parameters chosen, the accuracy can improve. Moreover for different approaches, the best input pattern is different. With different parameters as input, the optimal bandwidth is dissimilar for KR. The rms errors of photometric redshifts based on SVM and KR methods are less than 0.03 and 0.02, respectively. Finally the strengths and weaknesses of the two approaches are summarized. Compared to other methods of estimating photometric redshifts, they show their superiorities, especially KR, in terms of accuracy.Comment: accepted for publication in ChJA

    LOTIS, Super-LOTIS, SDSS and Tautenburg Observations of GRB 010921

    Get PDF
    We present multi-instrument optical observations of the High Energy Transient Explorer (HETE-2)/Interplanetary Network (IPN) error box of GRB 010921. This event was the first gamma ray burst (GRB) localized by HETE-2 which has resulted in the detection of an optical afterglow. In this paper we report the earliest known observations of the GRB010921 field, taken with the 0.11-m Livermore Optical Transient Imaging System (LOTIS) telescope, and the earliest known detection of the GRB010921 optical afterglow, using the 0.5-m Sloan Digital Sky Survey Photometric Telescope (SDSS PT). Observations with the LOTIS telescope began during a routine sky patrol 52 minutes after the burst. Observations were made with the SDSS PT, the 0.6-m Super-LOTIS telescope, and the 1.34-m Tautenburg Schmidt telescope at 21.3, 21.8, and 37.5 hours after the GRB, respectively. In addition, the host galaxy was observed with the USNOFS 1.0-m telescope 56 days after the burst. We find that at later times (t > 1 day after the burst), the optical afterglow exhibited a power-law decline with a slope of α=1.75±0.28\alpha = 1.75 \pm 0.28. However, our earliest observations show that this power-law decline can not have extended to early times (t < 0.035 day).Comment: AASTeX v5.x LaTeX 2e, 6 pages with 2 postscript figures, will be submitted to ApJ Letter

    The Black Hole-Bulge Relationship in Luminous Broad-Line Active Galactic Nuclei and Host Galaxies

    Full text link
    We have measured the stellar velocity dispersions (\sigma_*) and estimated the central black hole (BH) masses for over 900 broad-line active galactic nuclei (AGNs) observed with the Sloan Digital Sky Survey. The sample includes objects which have redshifts up to z=0.452, high quality spectra, and host galaxy spectra dominated by an early-type (bulge) component. The AGN and host galaxy spectral components were decomposed using an eigenspectrum technique. The BH masses (M_BH) were estimated from the AGN broad-line widths, and the velocity dispersions were measured from the stellar absorption spectra of the host galaxies. The range of black hole masses covered by the sample is approximately 10^6 < M_BH < 10^9 M_Sun. The host galaxy luminosity-velocity dispersion relationship follows the well-known Faber-Jackson relation for early-type galaxies, with a power-law slope 4.33+-0.21. The estimated BH masses are correlated with both the host luminosities (L_{H}) and the stellar velocity dispersions (\sigma_*), similar to the relationships found for low-redshift, bulge-dominated galaxies. The intrinsic scatter in the correlations are large (~0.4 dex), but the very large sample size allows tight constraints to be placed on the mean relationships: M_BH ~ L_H^{0.73+-0.05} and M_BH ~ \sigma_*^{3.34+-0.24}. The amplitude of the M_BH-\sigma_* relation depends on the estimated Eddington ratio, such that objects with larger Eddington ratios have smaller black hole masses than expected at a given velocity dispersion.Comment: Accepted for publication in A
    • …
    corecore