1,166 research outputs found

    Hadronic Axion Model in Gauge-Mediated Supersymmetry Breaking

    Get PDF
    A simple hadronic axion model is proposed in the framework of gauge-mediated supersymmetry breaking. Dynamics of Peccei-Quinn symmetry breaking is governed by supersymmetry breaking effects and the Peccei-Quinn breaking scale fPQf_{PQ} is inversely proportional to the gravitino mass. The gravitino mass range which corresponds to the axion window fPQ109f_{PQ} \simeq 10^{9} GeV -- 101310^{13} GeV lies in the region predicted by gauge-mediated supersymmetry breaking models. The model is also shown to be cosmologically viable.Comment: 20 pages including seven postscript figures, reviced version to be published in Physics Letters

    Searching for dark matter sterile neutrino in laboratory

    Full text link
    If the dark matter of the Universe is made of sterile neutrinos with the mass in keV region they can be searched for with the help of X-ray satellites. We discuss the prospects of laboratory experiments that can be competitive and complimentary to Space missions. We argue that the detailed study of beta decays of tritium and other nuclei with the help of Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) can potentially enter into interesting parameter range and even supersede the current astronomical bounds on the properties of dark matter sterile neutrino.Comment: RevTex, 6 pages, 1 figure. Journal version accepted in Phys.Rev.

    Can sterile neutrinos be the dark matter?

    Full text link
    We use the Ly-alpha forest power spectrum measured by the SDSS and high-resolution spectroscopy observations in combination with cosmic microwave background and galaxy clustering constraints to place limits on a sterile neutrino as a dark matter candidate in the warm dark matter (WDM) scenario. Such a neutrino would be created in the early universe through mixing with an active neutrino and would suppress structure on scales smaller than its free streaming scale. We ran a series of high-resolution hydrodynamic simulations with varying neutrino mass to describe the effect of a sterile neutrino on the Ly-alpha forest power spectrum. We find that the mass limit is m_s >14 keV at 95% c.l. (10keV at 99.9%), which is nearly an order of magnitude tighter constraint than previously published limits and is above the upper limit allowed by X-ray constraints, excluding this candidate as dark matter in this model. The corresponding limit for a neutrino that decoupled early while in thermal equilibrium is 2.5keV (95% c.l.).Comment: 4 pages, 2 figures, submitted to PR

    Leptogenesis in Inflaton Decay

    Get PDF
    We study a leptogenesis via decays of heavy Majorana neutrinos produced non-thermally in inflaton decays. We find that this scenario is fully consistent with existing supersymmetric inflation models such as for topological or for hybrid inflation and the Froggatt-Nielsen mechanism generating hierarchies in quark and lepton mass matrices. The reheating temperature TRT_R of inflation may be taken as low as TR108T_R \simeq 10^8 GeV to avoid the cosmological gravitino problem.Comment: 13 page

    Soft L_e-L_mu-L_tau flavour symmetry breaking and sterile neutrino keV Dark Matter

    Full text link
    We discuss how a LeLμLτL_e-L_\mu-L_\tau flavour symmetry that is softly broken leads to keV sterile neutrinos, which are a prime candidate for Warm Dark Matter. This is to our knowledge the first model where flavour symmetries are applied simultaneously to active and sterile neutrinos explaining at the same time active neutrino properties and this peculiar Dark Matter scenario. The essential point is that different scales of the symmetry breaking and the symmetry preserving entries in the mass matrix lead to one right-handed neutrino which is nearly massless compared to the other two. Furthermore, we naturally predict vanishing θ13\theta_{13} and maximal θ23\theta_{23}, while the correct value of θ12\theta_{12} must come from the mixing of the charged leptons. We can furthermore predict an exact mass spectrum for the light neutrinos, which will be testable in the very near future.Comment: 14 page

    Production and Evolution of Perturbations of Sterile Neutrino Dark Matter

    Full text link
    Sterile neutrinos, fermions with no standard model couplings [SU(2) singlets], are predicted by most extensions of the standard model, and may be the dark matter. I describe the nonthermal production and linear perturbation evolution in the early universe of this dark matter candidate. I calculate production of sterile neutrino dark matter including effects of Friedmann dynamics dictated by the quark-hadron transition and particle population, the alteration of finite temperature effective mass of active neutrinos due to the presence of thermal leptons, and heating of the coupled species due to the disappearance of degrees of freedom in the plasma. These effects leave the sterile neutrinos with a non-trivial momentum distribution. I also calculate the evolution of sterile neutrino density perturbations in the early universe through the linear regime and provide a fitting function form for the transfer function describing the suppression of small scale fluctuations for this warm dark matter candidate. The results presented here differ quantitatively from previous work due to the inclusion here of the relevant physical effects during the production epoch.Comment: v4: matches version in Phys. Rev.

    Origins of Hidden Sector Dark Matter I: Cosmology

    Get PDF
    We present a systematic cosmological study of a universe in which the visible sector is coupled, albeit very weakly, to a hidden sector comprised of its own set of particles and interactions. Assuming that dark matter (DM) resides in the hidden sector and is charged under a stabilizing symmetry shared by both sectors, we determine all possible origins of weak-scale DM allowed within this broad framework. We show that DM can arise only through a handful of mechanisms, lending particular focus to Freeze-Out and Decay and Freeze-In, as well as their variations involving late time re-annihilations of DM and DM particle anti-particle asymmetries. Much like standard Freeze-Out, where the abundance of DM depends only on the annihilation cross-section of the DM particle, these mechanisms depend only on a very small subset of physical parameters, many of which may be measured directly at the LHC. In particular, we show that each DM production mechanism is associated with a distinctive window in lifetimes and cross-sections for particles which may be produced in the near future. We evaluate prospects for employing the LHC to definitively reconstruct the origin of DM in a companion paper.Comment: 32 pages, 19 figures; v2: references added, published versio
    corecore