629 research outputs found

    Helicobacter

    Get PDF

    eredeti vigjåték 3 felvonåsban - irta Tóth Kålmån

    Get PDF
    Debreceni Nemzeti SzĂ­nhĂĄz. SzerdĂĄn Április 11-kĂ©n 1866. SzathmĂĄry KĂĄroly, a pesti nemzeti szinhĂĄz volt tagja, mint vendĂ©g. SzakĂĄl RĂłzsa, szerzƑdött tag elsƑ fellĂ©pteDebreceni Egyetem Egyetemi Ă©s Nemzeti KönyvtĂĄ

    Breakdown of the Luttinger sum-rule at the Mott-Hubbard transition in the one-dimensional t1-t2 Hubbard model

    Full text link
    We investigate the momentum distribution function near the Mott-Hubbard transition in the one-dimensional t1-t2 Hubbard model (the zig-zag Hubbard chain), with the density-matrix renormalization-group technique. We show that for strong interactions the Mott-Hubbard transition occurs between the metallic-phase and an insulating dimerized phase with incommensurate spin excitations, suggesting a decoupling of magnetic and charge excitations not present in weak coupling. We illustrate the signatures for the Mott-Hubbard transition and the commensurate-incommensurate transition in the insulating spin-gapped state in their respective ground-state momentum distribution functions

    Anderson Localization and Polarization

    Full text link
    Effects of randomness have supplied fundamental problems in condensed matter physics and localization due to interference of quantum mechanical electrons are well studied as the Anderson localization. Although we have well established understanding of the localization of non-interacting electrons, information of the correlated electrons with randomness is still missing. It was mainly due to lack of reliable numerical techniques for the correlated electrons. For the one dimensional correlated systems without randomness, lots of numerical results are collected by the Density Matrix Renormalization Group (DMRG) method and consistent understanding with analytical predictions has been achieved. In this paper, we plan to apply DMRG for the random electron systems by calculating direct responses of the system with electric field. At first, random systems without interaction are carefully investigated. Then we try to treat both of interaction and randomness in one dimensional systems

    Genetic Evidence of Functional Ficolin-2 Haplotype as Susceptibility Factor in Cutaneous Leishmaniasis

    Get PDF
    Background: Ficolin-2 coded by FCN2 gene is a soluble serum protein that plays an important role in innate immunity. In this study, we analyzed five functional polymorphisms of the FCN2 gene for their possible association with cutaneous leishmaniasis. Methods: Initially we screened 40 Syrian Arabs for the entire FCN2 gene. We investigated the contribution of FCN2 functional variants in 226 patients with cutaneous leishmaniasis and 286 healthy controls from Syria. Polymorphisms in the promoter regions (2986G/A, 2602G/A, 24A/G) of the FCN2 gene were assessed by TaqMan real time PCR, whereas polymorphisms in exon8 (+6359C/T and +6424G/T) were assessed by DNA sequencing. We also measured serum ficolin-2 levels in 70 control Syrian Arabs and correlated the serum concentrations to FCN2 genotypes and haplotypes respectively. Results: Nine new FCN2 variants including two with non synonymous substitutions in exon6 and exon8 were observed. The homozygous genotypes +6424T/T were distributed more in controls and none in patients (P = 0.04). The AGACG haplotype were observed more in patients than in controls (OR = 2.0, 95%CI 1.2–3.4, P = 0.006). The serum ficolin-2 levels were significantly distributed among the reconstructed ficolin-2 haplotypes (P,0.008) and the haplotype AGACG was observed with higher ficolin-2 levels in 70 control individuals. Conclusion: Our results demonstrate a significant association of FCN2 AGACG haplotype with cutaneous leishmaniasis in a Syrian Arab population. These first results provide a basis for a future study that could confirm or disprove possibl

    Recombinant adeno-associated virus serotype 6 (rAAV2/6)-mediated gene transfer to nociceptive neurons through different routes of delivery

    Get PDF
    BACKGROUND: Gene transfer to nociceptive neurons of the dorsal root ganglia (DRG) is a promising approach to dissect mechanisms of pain in rodents and is a potential therapeutic strategy for the treatment of persistent pain disorders such as neuropathic pain. A number of studies have demonstrated transduction of DRG neurons using herpes simplex virus, adenovirus and more recently, adeno-associated virus (AAV). Recombinant AAV are currently the gene transfer vehicles of choice for the nervous system and have several advantages over other vectors, including stable and safe gene expression. We have explored the capacity of recombinant AAV serotype 6 (rAAV2/6) to deliver genes to DRG neurons and characterized the transduction of nociceptors through five different routes of administration in mice. RESULTS: Direct injection of rAAV2/6 expressing green fluorescent protein (eGFP) into the sciatic nerve resulted in transduction of up to 30% eGFP-positive cells of L4 DRG neurons in a dose dependent manner. More than 90% of transduced cells were small and medium sized neurons (< 700 microm 2), predominantly colocalized with markers of nociceptive neurons, and had eGFP-positive central terminal fibers in the superficial lamina of the spinal cord dorsal horn. The efficiency and profile of transduction was independent of mouse genetic background. Intrathecal administration of rAAV2/6 gave the highest level of transduction (approximately 60%) and had a similar size profile and colocalization with nociceptive neurons. Intrathecal administration also transduced DRG neurons at cervical and thoracic levels and resulted in comparable levels of transduction in a mouse model for neuropathic pain. Subcutaneous and intramuscular delivery resulted in low levels of transduction in the L4 DRG. Likewise, delivery via tail vein injection resulted in relatively few eGFP-positive cells within the DRG, however, this transduction was observed at all vertebral levels and corresponded to large non-nociceptive cell types. CONCLUSION: We have found that rAAV2/6 is an efficient vector to deliver transgenes to nociceptive neurons in mice. Furthermore, the characterization of the transduction profile may facilitate gene transfer studies to dissect mechanisms behind neuropathic pain

    Dielectric catastrophe at the Mott transition

    Full text link
    We study the Mott transition as a function of interaction strength in the half-filled Hubbard chain with next-nearest-neighbor hopping t' by calculating the response to an external electric field using the Density Matrix Renormalization Group. The electric susceptibility chi diverges when approaching the critical point from the insulating side. We show that the correlation length xi characterizing this transition is directly proportional to fluctuations of the polarization and that chi ~ xi^2. The critical behavior shows that the transition is infinite-order for all t', whether or not a spin gap is present, and that hyperscaling holds.Comment: 4 pages, 4 eps figures, REVTe

    Interaction induced collapse of a section of the Fermi sea in in the zig-zag Hubbard ladder

    Full text link
    Using the next-nearest neighbor (zig-zag) Hubbard chain as an one dimemensional model, we investigate the influence of interactions on the position of the Fermi wavevectors with the density-matrix renormalization-group technique (DMRG). For suitable choices of the hopping parameters we observe that electron-electron correlations induce very different renormalizations for the two different Fermi wavevectors, which ultimately lead to a complete destruction of one section of the Fermi sea in a quantum critical point

    Materials with Colossal Dielectric Constant: Do They Exist?

    Full text link
    Experimental evidence is provided that colossal dielectric constants, epsilon >= 1000, sometimes reported to exist in a broad temperature range, can often be explained by Maxwell-Wagner type contributions of depletion layers at the interface between sample and contacts, or at grain boundaries. We demonstrate this on a variety of different materials. We speculate that the largest intrinsic dielectric constant observed so far in non-ferroelectric materials is of order 100.Comment: 3 figure
    • 

    corecore