536 research outputs found
Infinite-Order Percolation and Giant Fluctuations in a Protein Interaction Network
We investigate a model protein interaction network whose links represent
interactions between individual proteins. This network evolves by the
functional duplication of proteins, supplemented by random link addition to
account for mutations. When link addition is dominant, an infinite-order
percolation transition arises as a function of the addition rate. In the
opposite limit of high duplication rate, the network exhibits giant structural
fluctuations in different realizations. For biologically-relevant growth rates,
the node degree distribution has an algebraic tail with a peculiar rate
dependence for the associated exponent.Comment: 4 pages, 2 figures, 2 column revtex format, to be submitted to PRL 1;
reference added and minor rewording of the first paragraph; Title change and
major reorganization (but no result changes) in response to referee comments;
to be published in PR
Scale free networks from a Hamiltonian dynamics
Contrary to many recent models of growing networks, we present a model with
fixed number of nodes and links, where it is introduced a dynamics favoring the
formation of links between nodes with degree of connectivity as different as
possible. By applying a local rewiring move, the network reaches equilibrium
states assuming broad degree distributions, which have a power law form in an
intermediate range of the parameters used. Interestingly, in the same range we
find non-trivial hierarchical clustering.Comment: 4 pages, revtex4, 5 figures. v2: corrected statements about
equilibriu
Network-based prediction of metabolic enzymes' subcellular localization
Motivation: Revealing the subcellular localization of proteins within membrane-bound compartments is of a major importance for inferring protein function. Though current high-throughput localization experiments provide valuable data, they are costly and time-consuming, and due to technical difficulties not readily applicable for many Eukaryotes. Physical characteristics of proteins, such as sequence targeting signals and amino acid composition are commonly used to predict subcellular localizations using computational approaches. Recently it was shown that protein–protein interaction (PPI) networks can be used to significantly improve the prediction accuracy of protein subcellular localization. However, as high-throughput PPI data depend on costly high-throughput experiments and are currently available for only a few organisms, the scope of such methods is yet limited
Bridging topological and functional information in protein interaction networks by short loops profiling
Protein-protein interaction networks (PPINs) have been employed to identify potential novel interconnections between proteins as well as crucial cellular functions. In this study we identify fundamental principles of PPIN topologies by analysing network motifs of short loops, which are small cyclic interactions of between 3 and 6 proteins. We compared 30 PPINs with corresponding randomised null models and examined the occurrence of common biological functions in loops extracted from a cross-validated high-confidence dataset of 622 human protein complexes. We demonstrate that loops are an intrinsic feature of PPINs and that specific cell functions are predominantly performed by loops of different lengths. Topologically, we find that loops are strongly related to the accuracy of PPINs and define a core of interactions with high resilience. The identification of this core and the analysis of loop composition are promising tools to assess PPIN quality and to uncover possible biases from experimental detection methods. More than 96% of loops share at least one biological function, with enrichment of cellular functions related to mRNA metabolic processing and the cell cycle. Our analyses suggest that these motifs can be used in the design of targeted experiments for functional phenotype detection.This research was supported by the Biotechnology and Biological Sciences Research Council (BB/H018409/1 to AP, ACCC and FF, and BB/J016284/1 to NSBT) and by the Leukaemia & Lymphoma Research (to NSBT and FF). SSC is funded by a Leukaemia & Lymphoma Research Gordon Piller PhD Studentship
A human MAP kinase interactome.
Mitogen-activated protein kinase (MAPK) pathways form the backbone of signal transduction in the mammalian cell. Here we applied a systematic experimental and computational approach to map 2,269 interactions between human MAPK-related proteins and other cellular machinery and to assemble these data into functional modules. Multiple lines of evidence including conservation with yeast supported a core network of 641 interactions. Using small interfering RNA knockdowns, we observed that approximately one-third of MAPK-interacting proteins modulated MAPK-mediated signaling. We uncovered the Na-H exchanger NHE1 as a potential MAPK scaffold, found links between HSP90 chaperones and MAPK pathways and identified MUC12 as the human analog to the yeast signaling mucin Msb2. This study makes available a large resource of MAPK interactions and clone libraries, and it illustrates a methodology for probing signaling networks based on functional refinement of experimentally derived protein-interaction maps
Revisiting Date and Party Hubs: Novel Approaches to Role Assignment in Protein Interaction Networks
The idea of 'date' and 'party' hubs has been influential in the study of
protein-protein interaction networks. Date hubs display low co-expression with
their partners, whilst party hubs have high co-expression. It was proposed that
party hubs are local coordinators whereas date hubs are global connectors. Here
we show that the reported importance of date hubs to network connectivity can
in fact be attributed to a tiny subset of them. Crucially, these few, extremely
central, hubs do not display particularly low expression correlation,
undermining the idea of a link between this quantity and hub function. The
date/party distinction was originally motivated by an approximately bimodal
distribution of hub co-expression; we show that this feature is not always
robust to methodological changes. Additionally, topological properties of hubs
do not in general correlate with co-expression. Thus, we suggest that a
date/party dichotomy is not meaningful and it might be more useful to conceive
of roles for protein-protein interactions rather than individual proteins. We
find significant correlations between interaction centrality and the functional
similarity of the interacting proteins.Comment: 27 pages, 5 main figures, 4 supplementary figure
MCL-CAw: A refinement of MCL for detecting yeast complexes from weighted PPI networks by incorporating core-attachment structure
Abstract Background The reconstruction of protein complexes from the physical interactome of organisms serves as a building block towards understanding the higher level organization of the cell. Over the past few years, several independent high-throughput experiments have helped to catalogue enormous amount of physical protein interaction data from organisms such as yeast. However, these individual datasets show lack of correlation with each other and also contain substantial number of false positives (noise). Over these years, several affinity scoring schemes have also been devised to improve the qualities of these datasets. Therefore, the challenge now is to detect meaningful as well as novel complexes from protein interaction (PPI) networks derived by combining datasets from multiple sources and by making use of these affinity scoring schemes. In the attempt towards tackling this challenge, the Markov Clustering algorithm (MCL) has proved to be a popular and reasonably successful method, mainly due to its scalability, robustness, and ability to work on scored (weighted) networks. However, MCL produces many noisy clusters, which either do not match known complexes or have additional proteins that reduce the accuracies of correctly predicted complexes. Results Inspired by recent experimental observations by Gavin and colleagues on the modularity structure in yeast complexes and the distinctive properties of "core" and "attachment" proteins, we develop a core-attachment based refinement method coupled to MCL for reconstruction of yeast complexes from scored (weighted) PPI networks. We combine physical interactions from two recent "pull-down" experiments to generate an unscored PPI network. We then score this network using available affinity scoring schemes to generate multiple scored PPI networks. The evaluation of our method (called MCL-CAw) on these networks shows that: (i) MCL-CAw derives larger number of yeast complexes and with better accuracies than MCL, particularly in the presence of natural noise; (ii) Affinity scoring can effectively reduce the impact of noise on MCL-CAw and thereby improve the quality (precision and recall) of its predicted complexes; (iii) MCL-CAw responds well to most available scoring schemes. We discuss several instances where MCL-CAw was successful in deriving meaningful complexes, and where it missed a few proteins or whole complexes due to affinity scoring of the networks. We compare MCL-CAw with several recent complex detection algorithms on unscored and scored networks, and assess the relative performance of the algorithms on these networks. Further, we study the impact of augmenting physical datasets with computationally inferred interactions for complex detection. Finally, we analyse the essentiality of proteins within predicted complexes to understand a possible correlation between protein essentiality and their ability to form complexes. Conclusions We demonstrate that core-attachment based refinement in MCL-CAw improves the predictions of MCL on yeast PPI networks. We show that affinity scoring improves the performance of MCL-CAw.http://deepblue.lib.umich.edu/bitstream/2027.42/78256/1/1471-2105-11-504.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/2/1471-2105-11-504-S1.PDFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/3/1471-2105-11-504-S2.ZIPhttp://deepblue.lib.umich.edu/bitstream/2027.42/78256/4/1471-2105-11-504.pdfPeer Reviewe
Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices
BACKGROUND: Protein-protein interactions are critical for cellular functions. Recently developed computational approaches for predicting protein-protein interactions utilize co-evolutionary information of the interacting partners, e.g., correlations between distance matrices, where each matrix stores the pairwise distances between a protein and its orthologs from a group of reference genomes. RESULTS: We proposed a novel, simple method to account for some of the intra-matrix correlations in improving the prediction accuracy. Specifically, the phylogenetic species tree of the reference genomes is used as a guide tree for hierarchical clustering of the orthologous proteins. The distances between these clusters, derived from the original pairwise distance matrix using the Neighbor Joining algorithm, form intermediate distance matrices, which are then transformed and concatenated into a super phylogenetic vector. A support vector machine is trained and tested on pairs of proteins, represented as super phylogenetic vectors, whose interactions are known. The performance, measured as ROC score in cross validation experiments, shows significant improvement of our method (ROC score 0.8446) over that of using Pearson correlations (0.6587). CONCLUSION: We have shown that the phylogenetic tree can be used as a guide to extract intra-matrix correlations in the distance matrices of orthologous proteins, where these correlations are represented as intermediate distance matrices of the ancestral orthologous proteins. Both the unsupervised and supervised learning paradigms benefit from the explicit inclusion of these intermediate distance matrices, and particularly so in the latter case, which offers a better balance between sensitivity and specificity in the prediction of protein-protein interactions
- …