27,184 research outputs found
An analysis of I/O efficient order-statistic-based techniques for noise power estimation in the HRMS sky survey's operational system
Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined
Mesoscopic dynamical differences from quantum state preparation in a Bose-Hubbard trimer
Conventional wisdom is that quantum effects will tend to disappear as the
number of quanta in a system increases, and the evolution of a system will
become closer to that described by mean field classical equations. In this
letter we combine newly developed experimental techniques to propose and
analyse an experiment using a Bose-Hubbard trimer where the opposite is the
case. We find that differences in the preparation of a centrally evacuated
trimer can lead to readily observable differences in the subsequent dynamics
which increase with system size. Importantly, these differences can be detected
by the simple measurements of atomic number.Comment: 5 pages, 4 figures, theor
Monopole Vector Spherical Harmonics
Eigenfunctions of total angular momentum for a charged vector field
interacting with a magnetic monopole are constructed and their properties
studied. In general, these eigenfunctions can be obtained by applying vector
operators to the monopole spherical harmonics in a manner similar to that often
used for the construction of the ordinary vector spherical harmonics. This
construction fails for the harmonics with the minimum allowed angular momentum.
These latter form a set of vector fields with vanishing covariant curl and
covariant divergence, whose number can be determined by an index theorem.Comment: 21 pages, CU-TP-60
The NASA SETI sky survey: Recent developments
NASA's Search for Extraterrestrial Intelligence (SETI) project utilizes two complementary search strategies: a sky survey and a targeted search. The SETI team at the Jet Propulsion Laboratory (JPL) in Pasadena, California, has primary responsibility to develop and carry out the sky survey part. Described here is progress that has been made developing the major elements of the survey including a 2-million channel wideband spectrum analyzer system that is being designed and constructed by JPL for the Deep Space Network (DSN). The system will be a multiuser instrument; it will serve as a prototype for the SETI sky survey processor. This prototype system will be used to test the signal detection and observational strategies on DSN antennas in the near future
Saturn's microwave spectrum: Implications for the atmosphere and the rings
Measurements of Saturn's disk temperature are compiled to determine the planet's microwave spectrum from 1 mm to 100 cm wavelength. The data were adjusted to conform with a common flux density scale. A model of Saturn's rings is used to remove the effects of the rings from the atmospheric component at centimeter and decimeter wavelengths. Theoretical spectra for a number of convective atmospheric models were computed and compared with the observed spectrum. Radiative-convective models with approximately solar composition and with an effective temperature of approximately 89 K are in good agreement with the observations. The agreement between the observed and theoretical spectra is a strong indication that gaseous ammonia is present in Saturn's atmosphere. A good fit to the data is obtained with an ammonia mixing ratio of approximately 5 x 10,0001. A comparison of the millimeter wavelength data with the best-fitting atmospheric spectrum indicates that the thermal component of the ring brightness temperature near 1 mm wavelength is approximately 25 k
Noncommutative geometry, topology and the standard model vacuum
As a ramification of a motivational discussion for previous joint work, in
which equations of motion for the finite spectral action of the Standard Model
were derived, we provide a new analysis of the results of the calculations
herein, switching from the perspective of Spectral triple to that of Fredholm
module and thus from the analogy with Riemannian geometry to the pre-metrical
structure of the Noncommutative geometry. Using a suggested Noncommutative
version of Morse theory together with algebraic -theory to analyse the
vacuum solutions, the first two summands of the algebra for the finite triple
of the Standard Model arise up to Morita equivalence. We also demonstrate a new
vacuum solution whose features are compatible with the physical mass matrix.Comment: 24 page
On the structure of the space of generalized connections
We give a modern account of the construction and structure of the space of
generalized connections, an extension of the space of connections that plays a
central role in loop quantum gravity.Comment: 30 pages, added references, minor changes. To appear in International
Journal of Geometric Methods in Modern Physic
Simplified methods of assessing the impact of grid frequency dynamics upon generating plants
The frequency of the national electricity grid is affected by fluctuations in supply and demand, and so continually "judders" in an essentially unpredictable fashion around 50 Hz. At present such perturbations do not seemingly affect Nuclear Electric as most of their plant is run at more or less constant load, but they would like to be able to offer the national grid a mode of operation in which they "followed" the grid frequency: i.e., as the frequency rose above or fell below 50 Hz, the plant's output would be adjusted so as to tend to restore the frequency to 50 Hz. The aim is to maintain grid frequency within 0.2 Hz of its notional value. Such a mode of operation, however, would cause a certain amount of damage to plant components owing to the consequent continual changes in temperature and pressure within them.
Nuclear Electric currently have complex computational models of how plants will behave under these conditions, which allows them to compute plant data (e.g., reactor temperatures) from given grid frequency data. One approach to damage assessment would require several years'-worth of real grid data to be fed into this model and the corresponding damage computed (via "cycle distributions" created by their damage experts). The results of this analysis would demonstrate one of three possibilities: the damage may be acceptable under all reasonable operating conditions; or it may be acceptable except in the case of an exceptional abrupt change in grid frequency (caused by power transmission line failure, or another power station suddenly going off-line, for instance), in which case some kind of backup supply (e.g., gas boilers) would be required; or it may simply be unacceptable.
However, their current model runs in approximately real time, making it inappropriate for such a large amount of data: our problem was to suggest alternative approaches. Specifically, we were asked the following questions:
- Can component damage be reliably estimated directly from cycle distributions of grid frequency? i.e., are there maps from frequency cycle distributions to plant parameter cycle distributions?
- Can a simple model of plant dynamics be used to assess the potential for such maps?
- What methods can be used to select representative samples of grid frequency behaviour?
- What weightings should be applied to the selections?
- Is it possible to construct a "cycle transform" (Fourier transform) which will capture the essential features of grid frequency and which can then be inverted to generate simulated frequency transients?
We did not consider this last question, other than to say "probably not".
We were supplied with data of the actual grid frequency measurements for the evening of 29/7/95, and the corresponding plant responses (obtained using Nuclear Electric's current computational model). A simplified nonlinear mathematical model of the plant was also provided.
Two main approaches were considered: statistical prediction and analytical modelling via a reduction of the simplified plant model
- …