8,611 research outputs found
Performance of the CMS Pixel Detector at an upgraded LHC
The CMS experiment will include a pixel detector for pattern recognition and
vertexing. It will consist of three barrel layers and two endcaps on each side,
providing three space-points up to a pseudoraditity of 2.1. Taking into account
the expected limitations of its performance in the LHC environment an 8-9 layer
pixel detector for an upgraded LHC is discussed.Comment: Contribution to the 10th European Symposium on Semiconductor
Detectors, June 12 - 16, 2005 in Wildbad Kreuth, Germany. 6 pages, 4 figures,
1 table. Referee's comments implemente
Spectral function at high missing energies and momenta
The nuclear spectral function at high missing energies and momenta has been
determined from a self-consistent calculation of the Green's function in
nuclear matter using realistic nucleon-nucleon interactions. The results are
compared with recent experimental data derived from () reactions on
. A rather good agreement is obtained if the Green's functions are
calculated in a non-perturbative way.Comment: 10 pages, 3 figure
Fluence Dependence of Charge Collection of irradiated Pixel Sensors
The barrel region of the CMS pixel detector will be equipped with ``n-in-n''
type silicon sensors. They are processed on DOFZ material, use the moderated
p-spray technique and feature a bias grid. The latter leads to a small fraction
of the pixel area to be less sensitive to particles. In order to quantify this
inefficiency prototype pixel sensors irradiated to particle fluences between
and 2.6\times 10^{15} \Neq have been bump bonded to
un-irradiated readout chips and tested using high energy pions at the H2 beam
line of the CERN SPS. The readout chip allows a non zero suppressed analogue
readout and is therefore well suited to measure the charge collection
properties of the sensors.
In this paper we discuss the fluence dependence of the collected signal and
the particle detection efficiency. Further the position dependence of the
efficiency is investigated.Comment: 11 Pages, Presented at the 5th Int. Conf. on Radiation Effects on
Semiconductor Materials Detectors and Devices, October 10-13, 2004 in
Florence, Italy, v3: more typos corrected, minor changes required by the
refere
Pseudogap at hot spots in the two-dimensional Hubbard model at weak coupling
We analyze the interaction-induced renormalization of single-particle
excitations in the two-dimensional Hubbard model at weak coupling using the
Wick-ordered version of the functional renormalization group. The self energy
is computed for real frequencies by integrating a flow equation with
renormalized two-particle interactions. In the vicinity of hot spots, that is
points where the Fermi surface intersects the umklapp surface, self energy
effects beyond the usual quasi-particle renormalizations and damping occur near
instabilities of the normal, metallic phase. Strongly enhanced renormalized
interactions between particles at different hot spots generate a pronounced
low-energy peak in the imaginary part of the self energy, leading to a
pseudogap-like double-peak structure in the spectral function for
single-particle excitations.Comment: 14 pages, 7 figure
Covariate-assisted spectral clustering
Biological and social systems consist of myriad interacting units. The
interactions can be represented in the form of a graph or network. Measurements
of these graphs can reveal the underlying structure of these interactions,
which provides insight into the systems that generated the graphs. Moreover, in
applications such as connectomics, social networks, and genomics, graph data
are accompanied by contextualizing measures on each node. We utilize these node
covariates to help uncover latent communities in a graph, using a modification
of spectral clustering. Statistical guarantees are provided under a joint
mixture model that we call the node-contextualized stochastic blockmodel,
including a bound on the mis-clustering rate. The bound is used to derive
conditions for achieving perfect clustering. For most simulated cases,
covariate-assisted spectral clustering yields results superior to regularized
spectral clustering without node covariates and to an adaptation of canonical
correlation analysis. We apply our clustering method to large brain graphs
derived from diffusion MRI data, using the node locations or neurological
region membership as covariates. In both cases, covariate-assisted spectral
clustering yields clusters that are easier to interpret neurologically.Comment: 28 pages, 4 figures, includes substantial changes to theoretical
result
Building CMS Pixel Barrel Detectur Modules
For the barrel part of the CMS pixel tracker about 800 silicon pixel detector
modules are required. The modules are bump bonded, assembled and tested at the
Paul Scherrer Institute. This article describes the experience acquired during
the assembly of the first ~200 modules.Comment: 5 pages, 7 figures, Vertex200
Radiation hardness of CMS pixel barrel modules
Pixel detectors are used in the innermost part of the multi purpose
experiments at LHC and are therefore exposed to the highest fluences of
ionising radiation, which in this part of the detectors consists mainly of
charged pions. The radiation hardness of all detector components has thoroughly
been tested up to the fluences expected at the LHC. In case of an LHC upgrade,
the fluence will be much higher and it is not yet clear how long the present
pixel modules will stay operative in such a harsh environment. The aim of this
study was to establish such a limit as a benchmark for other possible detector
concepts considered for the upgrade.
As the sensors and the readout chip are the parts most sensitive to radiation
damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout
chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to
6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq.
After irradiation the response of the system to beta particles from a Sr-90
source was measured to characterise the charge collection efficiency of the
sensor. Radiation induced changes in the readout chip were also measured. The
results show that the present pixel modules can be expected to be still
operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq
still see the beta particles. However, further tests are needed to confirm
whether a stable operation with high particle detection efficiency is possible
after such a high fluence.Comment: Contribution to the 11th European Symposium on Semiconductor
Detectors June 7-11, 2009 Wildbad Kreuth, German
Reduction of Tc due to Impurities in Cuprate Superconductors
In order to explain how impurities affect the unconventional
superconductivity, we study non-magnetic impurity effect on the transition
temperature using on-site U Hubbard model within a fluctuation exchange (FLEX)
approximation. We find that in appearance, the reduction of Tc roughly
coincides with the well-known Abrikosov-Gor'kov formula. This coincidence
results from the cancellation between two effects; one is the reduction of
attractive force due to randomness, and another is the reduction of the damping
rate of quasi-particle arising from electron interaction. As another problem,
we also study impurity effect on underdoped cuprate as the system showing
pseudogap phenomena. To the aim, we adopt the pairing scenario for the
pseudogap and discuss how pseudogap phenomena affect the reduction of Tc by
impurities. We find that 'pseudogap breaking' by impurities plays the essential
role in underdoped cuprate and suppresses the Tc reduction due to the
superconducting (SC) fluctuation.Comment: 14 pages, 28 figures To be published in JPS
A double junction model of irradiated silicon pixel sensors for LHC
In this paper we discuss the measurement of charge collection in irradiated
silicon pixel sensors and the comparison with a detailed simulation. The
simulation implements a model of radiation damage by including two defect
levels with opposite charge states and trapping of charge carriers. The
modeling proves that a doubly peaked electric field generated by the two defect
levels is necessary to describe the data and excludes a description based on
acceptor defects uniformly distributed across the sensor bulk. In addition, the
dependence of trap concentrations upon fluence is established by comparing the
measured and simulated profiles at several fluences and bias voltages.Comment: Talk presented at the 10th European Symposium on Semiconductor
Detectors, June 12-16 2005, Wildbad Kreuth, Germany. 9 pages, 4 figure
- …
