Biological and social systems consist of myriad interacting units. The
interactions can be represented in the form of a graph or network. Measurements
of these graphs can reveal the underlying structure of these interactions,
which provides insight into the systems that generated the graphs. Moreover, in
applications such as connectomics, social networks, and genomics, graph data
are accompanied by contextualizing measures on each node. We utilize these node
covariates to help uncover latent communities in a graph, using a modification
of spectral clustering. Statistical guarantees are provided under a joint
mixture model that we call the node-contextualized stochastic blockmodel,
including a bound on the mis-clustering rate. The bound is used to derive
conditions for achieving perfect clustering. For most simulated cases,
covariate-assisted spectral clustering yields results superior to regularized
spectral clustering without node covariates and to an adaptation of canonical
correlation analysis. We apply our clustering method to large brain graphs
derived from diffusion MRI data, using the node locations or neurological
region membership as covariates. In both cases, covariate-assisted spectral
clustering yields clusters that are easier to interpret neurologically.Comment: 28 pages, 4 figures, includes substantial changes to theoretical
result